
Algebraic and Combinatorial Algorithms for 
the Matrix Code Equivalence Problem

Rank-Metric Codes and Network Coding, SIAM-AG 2025
July 11, Madison, Wisconsin

Monika Trimoska

including multiple joint works with the MEDS team 

*Animated version at: https://mtrimoska.com/slides/SIAM25/index.html

https://mtrimoska.com/slides/SIAM25/index.html


2

The MEDS team



Matrix code equivalence problem 
(MCE)



4

Matrix (rank-metric) codes

Matrix code
A matrix code  over  is a -dimensional -linear subspace of .𝒞 𝔽q k 𝔽q 𝔽m×n

q



4

Matrix (rank-metric) codes

Matrix code
A matrix code  over  is a -dimensional -linear subspace of .𝒞 𝔽q k 𝔽q 𝔽m×n

q

Basis of a matrix code
The basis of a matrix code  is given by the -tuple .𝒞 k (C(1), …, C(k))



4

Matrix (rank-metric) codes

Matrix code
A matrix code  over  is a -dimensional -linear subspace of .𝒞 𝔽q k 𝔽q 𝔽m×n

q

Rank metric
For , the rank weight of  is given by the rank of , aka. C ∈ 𝔽m×n

q C C

.wt(C) = rk(C)

Basis of a matrix code
The basis of a matrix code  is given by the -tuple .𝒞 k (C(1), …, C(k))
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Matrix (rank-metric) codes

Example. q = 13, m = 4, n = 6, k = 5

C = λ1 ⋅

2 8 10 4 5 7
1 11 7 9 6 12
3 0 13 5 4 8
9 6 3 2 10 11

+ λ2 ⋅

12 0 4 11 9 3
5 6 8 13 2 1

10 7 3 9 4 6
2 5 11 8 1 10

+ λ3 ⋅

5 2 9 11 4 8
3 7 1 10 12 0
6 9 2 13 11 8
1 5 6 3 10 7

+ λ4 ⋅

9 4 6 1 13 2
8 0 5 12 6 11
3 7 10 9 4 5
2 8 11 3 7 1

+ λ5 ⋅

7 10 4 6 8 3
1 5 2 11 9 0
13 7 6 4 12 2
8 3 1 9 5 10

λi ∈ 𝔽q
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Matrix code equivalence

Isometry
An isometry (for our purposes) between two codes  and  is a linear map  that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In this case: an isometry preserves the rank weight of codewords.

Which linear transformations preserve the rank?

Multiply a codeword on the right by any M ∈ 𝔽n×r
q

Multiply a codeword on the right by B ∈ GLn

Multiply a codeword on the left by A ∈ GLm

✘
✓
✓

Take the transposition of a codeword (only when , does not make the equivalence problem harder)m = n ✓
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Matrix code equivalence

Input: Two -dimensional matrix codes  for two matrix codes  and . 
Question: Find - if any - a map , where  and  such that for 
all , it holds that .

k 𝒞, 𝒟 ⊂ 𝔽m×n
q 𝒞 𝒟

(A, B) A ∈ GLm(𝔽q) B ∈ GLn(𝔽q)
C ∈ 𝒞 ACB ∈ 𝒟

The Matrix Code Equivalence (MCE) problem
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Matrix code equivalence

The MCE problem in matrix form

Let  be a basis of code  and let  be a basis of code . Find , 
 and  such that

(C(1), …, C(k)) 𝒞 (D(1), …, D(k)) 𝒟 A ∈ GLm(𝔽q)
B ∈ GLn(𝔽q) T ∈ GLk(𝔽q)

D(i) = ∑
1≤ j≤k
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Matrix code equivalence

The MCE problem in matrix form

Let  be a basis of code  and let  be a basis of code . Find , 
 and  such that

(C(1), …, C(k)) 𝒞 (D(1), …, D(k)) 𝒟 A ∈ GLm(𝔽q)
B ∈ GLn(𝔽q) T ∈ GLk(𝔽q)

D(i) = ∑
1≤ j≤k

tj,iAC( j)B, ∀1 ≤ i ≤ k

change of basis 
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Tensor isomorphism
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Multilinear forms

-linear formk
A -linear form is a function  that is linear in each argument. 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q × … × 𝔽n
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if we fix  arguments, it is linear in the remaining argument.k − 1
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Multilinear forms

-linear formk
A -linear form is a function  that is linear in each argument. k ϕ : 𝔽n

q × … × 𝔽n
q → 𝔽q

if we fix  arguments, it is linear in the remaining argument.k − 1

Alternating property
 is alternating :  whenever  for some .ϕ ϕ(x1, …, xk) = 0 xi = xj i ≠ j

We focus on trilinear forms: .ϕ(x, y, z)
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Array representation
Bilinear form:
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Alternating trilinear form
The alternating property

 whenever  or  or .ϕ(x, y, z) = 0 x = y x = z y = z

Compact representation
 , where  denotes the wedge product.∑

1⩽i<j<s⩽n

γijs(e*i ∧ e*j ∧ e*s ) ∧

 sends  to e*i ∧ e*j ∧ e*s (x, y, z)
xi yi zi
xj yj zj
xs ys zs

 = xiyjzs−xiyszj+xsyizj−xjyizs+xjyszi−xsyjzi

Stored using  entries, instead of .(n
3) n3
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Alternating trilinear form equivalence

Input: Two alternating trilinear forms . 
Question: Find - if any -  such that .

ϕ, ψ
A ∈ GLn(𝔽q) ϕ(x, y, z) = ψ(Ax, Ay, Az)

The Alternating Trilinear Form Equivalence (ATFE) problem
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(Alternating) trilinear form  matrix code⟶
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ATFE  MCE⟶
Let  be a positive ATFE instance.(n, ϕ, ψ)

ψ(i)(x, y) =

= ψ(x, y, ei) =

= ϕ(Ax, Ay, Aei) =

= ϕ(Ax, Ay, a1ie1 + … + anien) =

= ∑
1⩽j⩽n

ajiϕ(Ax, Ay, ej) =

= ∑
1⩽j⩽n

ajiϕ( j)(Ax, Ay)

Rewrite in matrix form:

D(i) = ∑
1⩽j⩽n

ajiA⊤C( j)A, ∀i,1 ⩽ i ⩽ n

 is a solution to the MCE instance .(A⊤, A) (n, n, n, 𝒞, 𝒟)
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Cryptanalysis

Take 

Algebraic attacks
Attacks reducing MCE/ATFE to the 

problem of solving a system of polynomial 
equations.

Take 

Combinatorial attacks

Collision search attacks using isometry-
invariant substructures

Direct 
modelling

Minors 
modelling

Improved 
modelling

Graph-based 
algorithm

Leon-like 
algorithm
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Direct algebraic attack

The MCE problem in matrix form

Let  be a basis of code  and let  be a basis of code . Find , 
 and  such that

(C(1), …, C(k)) 𝒞 (D(1), …, D(k)) 𝒟 A ∈ GLm(𝔽q)
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Direct algebraic attack

The MCE problem in matrix form

Let  be a basis of code  and let  be a basis of code . Find , 
 and  such that

(C(1), …, C(k)) 𝒞 (D(1), …, D(k)) 𝒟 A ∈ GLm(𝔽q)
B ∈ GLn(𝔽q) T ∈ GLk(𝔽q)

D(i) = ∑
1≤ j≤k

tj,iAC( j)B, ∀1 ≤ i ≤ k

Alternatively, this gives a better modelling: 

∑
1≤ j≤k

tj,iD( j) = AC(i)B, ∀1 ≤ i ≤ k
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G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))
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Minors modelling

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))For a matrix , let  be a mapping that sends a matrix  to the vector 

 obtained by ‘flattening’ : 
 

 

C ∈ ℳm,n(𝔽q) Vec C
Vec(C) ∈ 𝔽mn

q C

Vec : C =
c1,1 … c1,n

⋮ ⋱ ⋮
cm,1 … cm,n

↦ Vec(C) = (c1,1, …, c1,n, …, cm,1, …, cm,n)
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Improved modelling

(Recall) we can see  from three directions𝒞

• a -dimensional code in k 𝔽m×n
q • an -dimensional code in m 𝔽n×k

q • an -dimensional code in  n 𝔽m×k
q

The complexity of the minors modelling is  
min(GB(n2 + m2, k(nm − k), GB(n2 + k2, m(nk − m), GB(k2 + m2, n(km − n))

Include all three packets of constraints !
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(Gröbner basis)
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Collision

We have a collision when we know a codeword  in  that maps to a codeword  in . C 𝒞 D 𝒟

  D = ACB
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Collision

With two collisions, we get the following system

  A−1D1 = C1B
  A−1D2 = C2B

When , results in a linear system with the same number of variables and equations. n = m = k

If  are all full rank, we should have a unique solution.C1, C2, D1, D2

We can easily recover  from .A A−1
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Collision

We have a collision when we know a codeword  in  that maps to a codeword  in . C 𝒞 D 𝒟

We can then infer linear constraints from

  A−1D = CB

  D = ACB

If we add these linear constraints to the system obtained from the algebraic attack, we can 
(sometimes) efficiently solve the system of equations and recover the isometry.
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The birthday paradox

The birthday problem in collision search algorithms

We draw, randomly, elements from a set of size .  
How many times do we expect to draw an element before we get the same element 
twice?

N
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The birthday paradox

The birthday problem in collision search algorithms

We draw, randomly, elements from a set of size .  
How many times do we expect to draw an element before we get the same element 
twice?

N

, for  a small constant.≈ c N c



55

General collision attack
A, B - number of codewordsN



55

General collision attack
A, B - number of codewordsN



55

General collision attack
A, B - number of codewordsN

N N



55

General collision attack
A, B - number of codewordsN

N N



55

General collision attack
A, B - number of codewordsN

N N



55

General collision attack
A, B - number of codewordsN

N N

check if it’s a collision
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General collision attack

MinRank

AC1 = D1B−1

AC2 = D2B−1

A−1D1 = C1B
A−1D2 = C2B
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General collision attack

MinRank

AC1 = D1B−1

AC2 = D2B−1

A−1D1 = C1B
A−1D2 = C2B

Leon-like algorithm
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Collision attack : complexity

    
1
d

⋅ dN ⋅ Cℙ

 - total number of elements in  (number of codewords)N S*

 - proportion of elements in  that satisfy  (density of codewords of rank )d S* ℙ r

  dN ⋅ CFF

Expected time to 
find one element 
that satisfies ℙ

Number of 
elements we want 

to find

Cost to check 
whether an 

element satisfies ℙ
Cartesian product 
between two lists 

of size dN

Cost to check 
whether two 

elements form a 
collision
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Collision attack : complexity

Depends on the choice of the predicate . The choice is made such that we obtain the optimal 
balance between the two parts of the algorithm, aka. they take approximately the same time 
(whenever possible).  

ℙ

1
d

dN Cℙ ≈ dN CFF
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Collision attack : complexity

Depends on the choice of the predicate . The choice is made such that we obtain the optimal 
balance between the two parts of the algorithm, aka. they take approximately the same time 
(whenever possible).  

ℙ

1
d

dN Cℙ ≈ dN CFF

Best trade-off: when  (assuming  and  are poly-time and comparable).d ≈ N− 1
3 Cℙ CFF

Time complexity 𝒪(N 2
3)

Memory complexity 𝒪(N 1
3)
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Why not  ?
A, B - number of codewordsN

N N

check if it’s a collision
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Distinguishing isomorphism invariants

A distinguishing invariant for QMLE (a variant of the isomorphism of polynomials problem) over .𝔽2

[BFV] Bouillaguet, Fouque, Véber. Graph-Theoretic Algorithms for the Isomorphism of Polynomials Problem. (2012)

A distinguishing invariant for ATFE with parameter .n = 9

[Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)

A distinguishing invariant for MCE and ATFE.

[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)

A distinguishing invariant for MCE and ATFE.

[RS] Ran, Samardjiska. Rare structures in tensor graphs - Bermuda triangles for cryptosystems based on the Tensor Isomorphism problem. (2024)
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Signatures from equivalence problems

Patarin’s signature scheme: 

Equivalence-based digital signature schemes in the NIST competition (and elsewhere):

MEDS
ALTEQ

Linear code equivalence

Matrix code equivalence

Alternating trilinear form equivalence

Isomorphism of polynomials

SeaSign, SQISign: Isogeny between elliptic curves

…

LESS: 

HAWK: Lattice isomorphism
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Thank you !

[RS]

[RS] Ran, Samardjiska. Rare structures in tensor graphs - Bermuda triangles for cryptosystems based on the Tensor Isomorphism problem. (2024)


