Algebraic and Combinatorial Algorithms for the Matrix Code Equivalence Problem

Monika Trimoska

including multiple joint works with the MEDS team

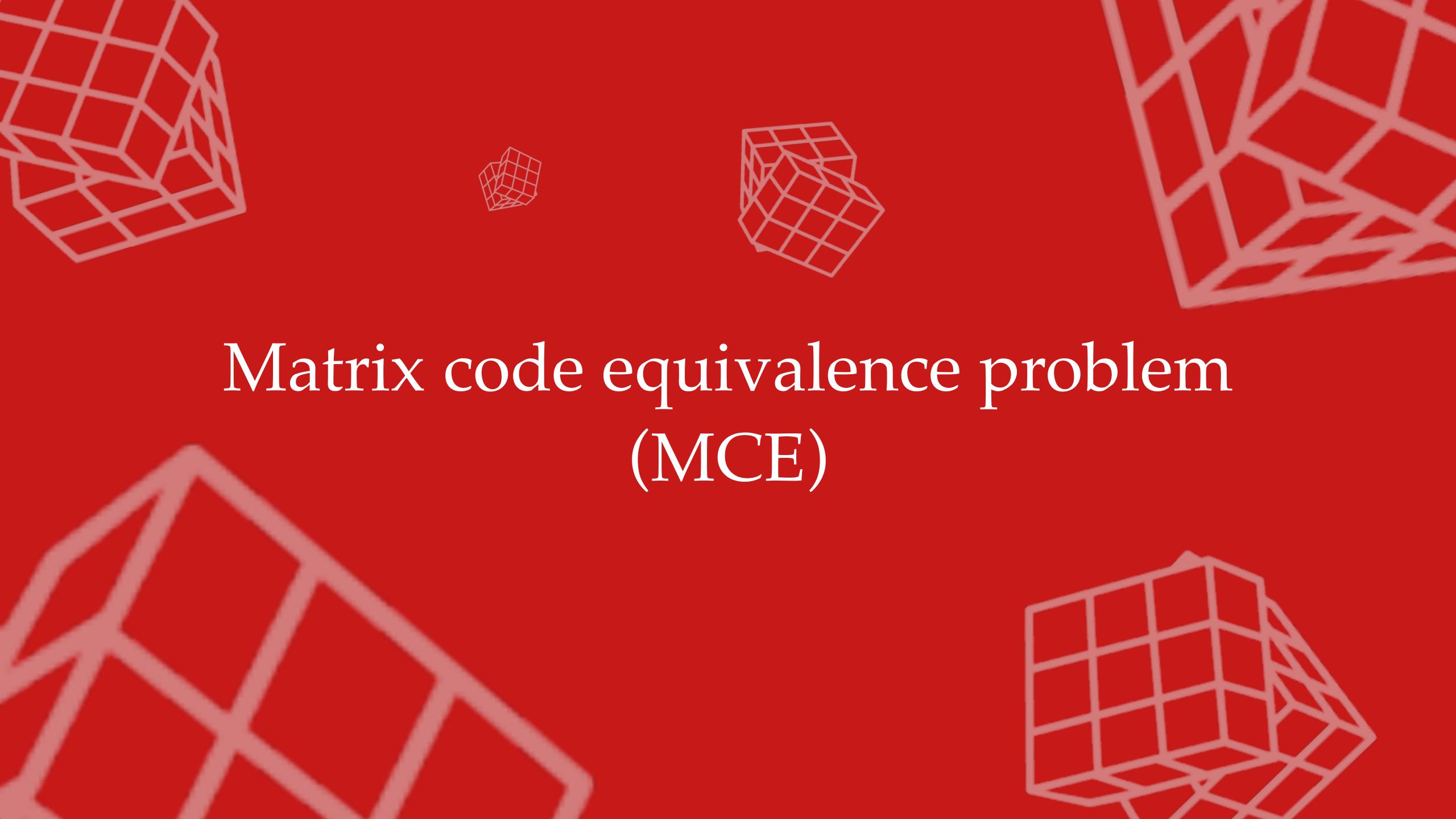
Rank-Metric Codes and Network Coding, SIAM-AG 2025 July 11, Madison, Wisconsin

The MEDS team

CD MEDS CD

Matrix Equivalence Digital Signature Scheme

Tung Chou, Academia Sinica, Taipei, Taiwan
Ruben Niederhagen, Academia Sinica, Taipei, Taiwan, and University of Southern Denmark, Odense, Denmark
Edoardo Persichetti, Florida Atlantic University, Boca Raton, USA, and Sapienza University, Rome, Italy
Lars Ran, Radboud Universiteit, Nijmegen, The Netherlands
Tovohery Hajatiana Randrianarisoa, Umeå University, Umeå, Sweden
Krijn Reijnders, Radboud Universiteit, Nijmegen, The Netherlands
Simona Samardjiska, Radboud Universiteit, Nijmegen, The Netherlands
Monika Trimoska, Radboud Universiteit, Nijmegen, The Netherlands



Matrix code

A matrix code \mathscr{C} over \mathbb{F}_q is a k-dimensional \mathbb{F}_q -linear subspace of $\mathbb{F}_q^{m \times n}$.

Matrix code

A matrix code \mathscr{C} over \mathbb{F}_q is a k-dimensional \mathbb{F}_q -linear subspace of $\mathbb{F}_q^{m \times n}$.

Basis of a matrix code ----------

The basis of a matrix code \mathscr{C} is given by the k-tuple ($\mathbb{C}^{(1)},...,\mathbb{C}^{(k)}$).

Matrix code

A matrix code \mathscr{C} over \mathbb{F}_q is a k-dimensional \mathbb{F}_q -linear subspace of $\mathbb{F}_q^{m \times n}$.

Basis of a matrix code -----

The basis of a matrix code \mathscr{C} is given by the k-tuple ($\mathbb{C}^{(1)}, ..., \mathbb{C}^{(k)}$).

Rank metric

For $C \in \mathbb{F}_q^{m \times n}$, the rank weight of C is given by the rank of C, aka.

$$\operatorname{wt}(\mathbf{C}) = \operatorname{rk}(\mathbf{C}).$$

Example. q = 13, m = 4, n = 6, k = 5

$$\mathbf{C} = \lambda_1 \cdot \begin{pmatrix} 2 & 8 & 10 & 4 & 5 & 7 \\ 1 & 11 & 7 & 9 & 6 & 12 \\ 3 & 0 & 13 & 5 & 4 & 8 \\ 9 & 6 & 3 & 2 & 10 & 11 \end{pmatrix} + \lambda_2 \cdot \begin{pmatrix} 12 & 0 & 4 & 11 & 9 & 3 \\ 5 & 6 & 8 & 13 & 2 & 1 \\ 10 & 7 & 3 & 9 & 4 & 6 \\ 2 & 5 & 11 & 8 & 1 & 10 \end{pmatrix} + \lambda_3 \cdot \begin{pmatrix} 5 & 2 & 9 & 11 & 4 & 8 \\ 3 & 7 & 1 & 10 & 12 & 0 \\ 6 & 9 & 2 & 13 & 11 & 8 \\ 1 & 5 & 6 & 3 & 10 & 7 \end{pmatrix} + \lambda_4 \cdot \begin{pmatrix} 9 & 4 & 6 & 1 & 13 & 2 \\ 8 & 0 & 5 & 12 & 6 & 11 \\ 3 & 7 & 10 & 9 & 4 & 5 \\ 2 & 8 & 11 & 3 & 7 & 1 \end{pmatrix} + \lambda_5 \cdot \begin{pmatrix} 7 & 10 & 4 & 6 & 8 & 3 \\ 1 & 5 & 2 & 11 & 9 & 0 \\ 13 & 7 & 6 & 4 & 12 & 2 \\ 8 & 3 & 1 & 9 & 5 & 10 \end{pmatrix} \quad \lambda_i \in \mathbb{F}_q$$

Isometry -

An isometry (for our purposes) between two codes $\mathscr C$ and $\mathscr D$ is a linear map $\mu:\mathscr C\to\mathscr D$ that preserves the metric.

Isometry

An isometry (for our purposes) between two codes $\mathscr C$ and $\mathscr D$ is a linear map $\mu:\mathscr C\to\mathscr D$ that preserves the metric.

In this case: an isometry preserves the rank weight of codewords.

Isometry -

An isometry (for our purposes) between two codes \mathscr{C} and \mathscr{D} is a linear map $\mu:\mathscr{C}\to\mathscr{D}$ that preserves the metric.

In this case: an isometry preserves the rank weight of codewords.

Isometry

An isometry (for our purposes) between two codes $\mathscr C$ and $\mathscr D$ is a linear map $\mu:\mathscr C\to\mathscr D$ that preserves the metric.

In this case: an isometry preserves the rank weight of codewords.

Which linear transformations preserve the rank?

 \longrightarrow Multiply a codeword on the right by any $\mathbf{M} \in \mathbb{F}_q^{n \times r}$

Isometry

An isometry (for our purposes) between two codes \mathscr{C} and \mathscr{D} is a linear map $\mu:\mathscr{C}\to\mathscr{D}$ that preserves the metric.

In this case: an isometry preserves the rank weight of codewords.

Which linear transformations preserve the rank?

 \longrightarrow Multiply a codeword on the right by any $\mathbf{M} \in \mathbb{F}_q^{n \times r}$

Isometry

An isometry (for our purposes) between two codes \mathscr{C} and \mathscr{D} is a linear map $\mu:\mathscr{C}\to\mathscr{D}$ that preserves the metric.

In this case: an isometry preserves the rank weight of codewords.

Which linear transformations preserve the rank?

 \longrightarrow Multiply a codeword on the right by any $\mathbf{M} \in \mathbb{F}_q^{n \times r}$

▶ Multiply a codeword on the right by $\mathbf{B} \in \mathrm{GL}_n$

Isometry

An isometry (for our purposes) between two codes \mathscr{C} and \mathscr{D} is a linear map $\mu:\mathscr{C}\to\mathscr{D}$ that preserves the metric.

In this case: an isometry preserves the rank weight of codewords.

- \longrightarrow Multiply a codeword on the right by any $\mathbf{M} \in \mathbb{F}_q^{n \times r}$
- \longrightarrow Multiply a codeword on the right by $\mathbf{B} \in \mathrm{GL}_n$

Isometry

An isometry (for our purposes) between two codes \mathscr{C} and \mathscr{D} is a linear map $\mu:\mathscr{C}\to\mathscr{D}$ that preserves the metric.

In this case: an isometry preserves the rank weight of codewords.

- \longrightarrow Multiply a codeword on the right by any $\mathbf{M} \in \mathbb{F}_q^{n \times r}$
- \longrightarrow Multiply a codeword on the right by $\mathbf{B} \in \mathrm{GL}_n$
- \longrightarrow Multiply a codeword on the left by $\mathbf{A} \in \mathrm{GL}_m$

Isometry

An isometry (for our purposes) between two codes \mathscr{C} and \mathscr{D} is a linear map $\mu:\mathscr{C}\to\mathscr{D}$ that preserves the metric.

In this case: an isometry preserves the rank weight of codewords.

- \longrightarrow Multiply a codeword on the right by any $\mathbf{M} \in \mathbb{F}_q^{n \times r}$
- \longrightarrow Multiply a codeword on the right by $\mathbf{B} \in \mathrm{GL}_n$
- \longrightarrow Multiply a codeword on the left by $\mathbf{A} \in \mathrm{GL}_m$

Isometry

An isometry (for our purposes) between two codes \mathscr{C} and \mathscr{D} is a linear map $\mu:\mathscr{C}\to\mathscr{D}$ that preserves the metric.

In this case: an isometry preserves the rank weight of codewords.

- \longrightarrow Multiply a codeword on the right by any $\mathbf{M} \in \mathbb{F}_q^{n \times r}$
- \longrightarrow Multiply a codeword on the right by $\mathbf{B} \in \mathrm{GL}_n$
- \longrightarrow Multiply a codeword on the left by $\mathbf{A} \in \mathrm{GL}_m$
- Take the transposition of a codeword (only when m = n, does not make the equivalence problem harder)

The Matrix Code Equivalence (MCE) problem

Input: Two *k*-dimensional matrix codes \mathscr{C} , $\mathscr{D} \subset \mathbb{F}_q^{m \times n}$ for two matrix codes \mathscr{C} and \mathscr{D} . **Question:** Find - if any - a map (\mathbf{A}, \mathbf{B}) , where $\mathbf{A} \in \mathrm{GL}_m(\mathbb{F}_q)$ and $\mathbf{B} \in \mathrm{GL}_n(\mathbb{F}_q)$ such that for all $\mathbf{C} \in \mathscr{C}$, it holds that $\mathbf{ACB} \in \mathscr{D}$.

The MCE problem in matrix form

Let $(\mathbf{C}^{(1)},...,\mathbf{C}^{(k)})$ be a basis of code $\mathscr C$ and let $(\mathbf{D}^{(1)},...,\mathbf{D}^{(k)})$ be a basis of code $\mathscr D$. Find $\mathbf{A} \in \mathrm{GL}_m(\mathbb F_q)$, $\mathbf{B} \in \mathrm{GL}_n(\mathbb F_q)$ and $\mathbf{T} \in \mathrm{GL}_k(\mathbb F_q)$ such that

$$\mathbf{D}^{(i)} = \sum_{1 \le j \le k} t_{j,i} \mathbf{A} \mathbf{C}^{(j)} \mathbf{B}, \quad \forall 1 \le i \le k$$

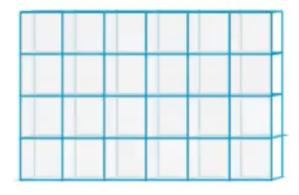
The MCE problem in matrix form

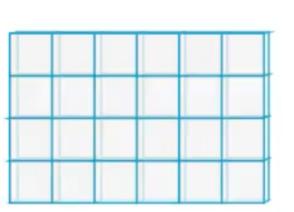
Let $(\mathbf{C}^{(1)},...,\mathbf{C}^{(k)})$ be a basis of code $\mathscr C$ and let $(\mathbf{D}^{(1)},...,\mathbf{D}^{(k)})$ be a basis of code $\mathscr D$. Find $\mathbf{A}\in \mathrm{GL}_m(\mathbb F_q)$, $\mathbf{B}\in \mathrm{GL}_n(\mathbb F_q)$ and $\mathbf{T}\in \mathrm{GL}_k(\mathbb F_q)$ such that

$$\mathbf{D}^{(i)} = \sum_{1 \le i \le k} t_{j,i} \mathbf{A} \mathbf{C}^{(j)} \mathbf{B}, \quad \forall 1 \le i \le k$$

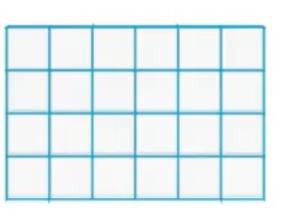
change of basis

We can think of a matrix code as a 3-tensor over \mathbb{F}_q .

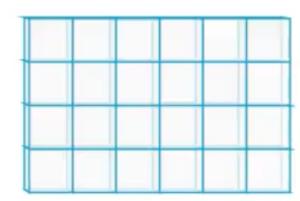




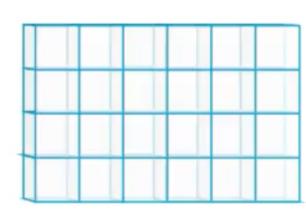
 \mathbb{C}_2



 \mathbb{J}_3



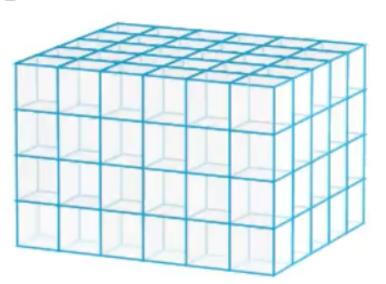
 \mathbb{C}_4



 \mathbf{C}_5

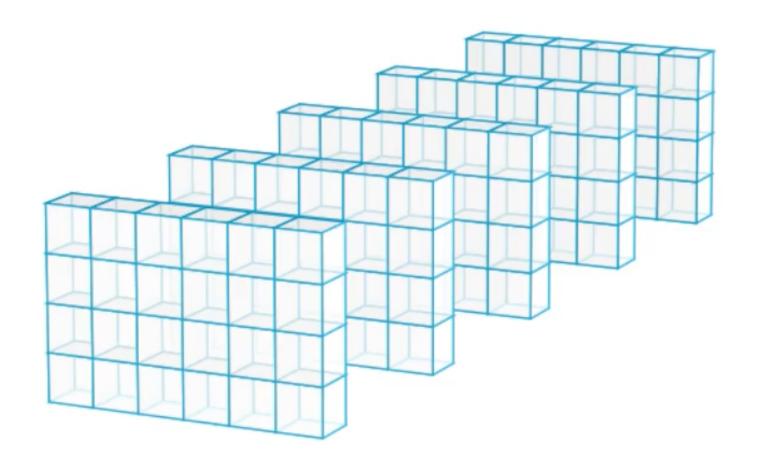
We can think of a matrix code as a 3-tensor over \mathbb{F}_q .

$$\mathcal{C} \subseteq \mathbb{F}_q^{m \times n \times k}$$



Viewed as a 3-tensor, we can see $\mathscr C$ from three directions

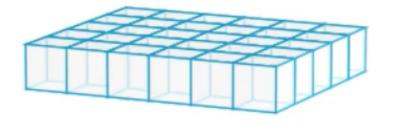
- a *k*-dimensional code in $\mathbb{F}_q^{m \times n}$
- an *m*-dimensional code in $\mathbb{F}_q^{n \times k}$
- an *n*-dimensional code in $\mathbb{F}_q^{m \times k}$

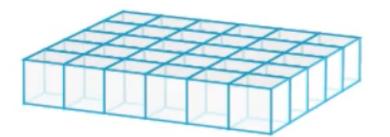


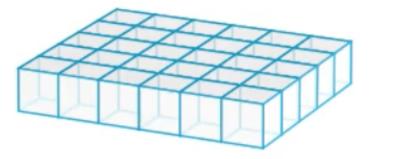
Viewed as a 3-tensor, we can see $\mathscr C$ from three directions

- a k-dimensional code in $\mathbb{F}_q^{m \times n}$
- an *m*-dimensional code in $\mathbb{F}_q^{n \times k}$
- an *n*-dimensional code in $\mathbb{F}_q^{m \times k}$



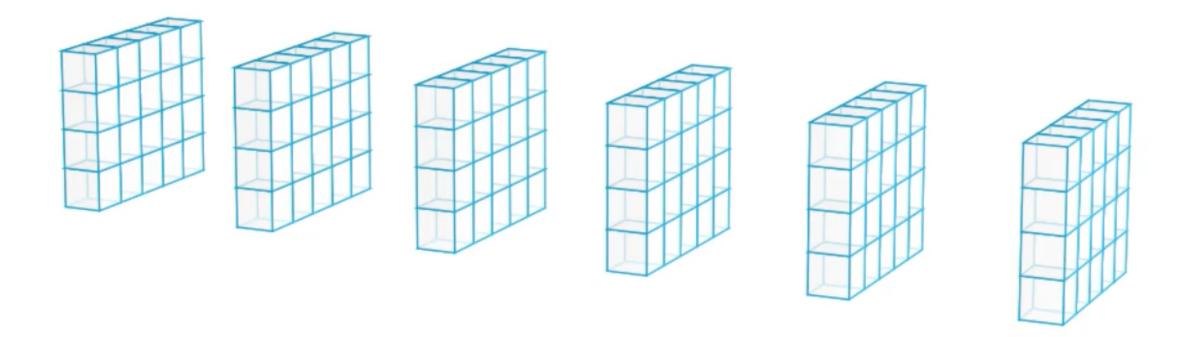




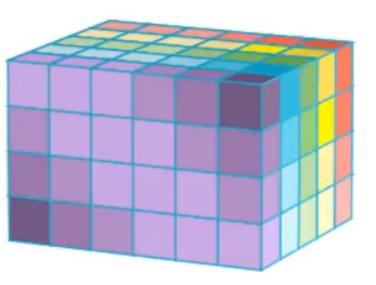


Viewed as a 3-tensor, we can see $\mathscr C$ from three directions

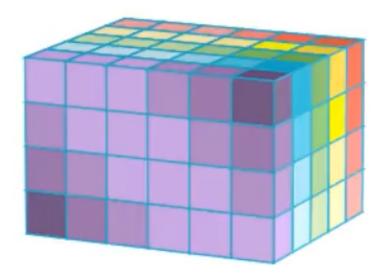
- a *k*-dimensional code in $\mathbb{F}_q^{m \times n}$
- an *m*-dimensional code in $\mathbb{F}_q^{n \times k}$
- an *n*-dimensional code in $\mathbb{F}_q^{m \times k}$



$$\mathcal{C} \subseteq \mathbb{F}_q^{m \times n \times k}$$



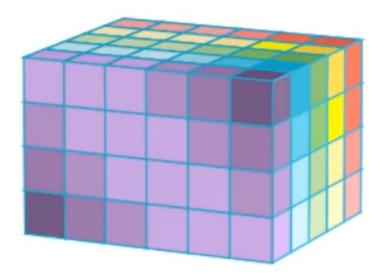
$$\mathbf{T} \in \mathrm{GL}_k(q)$$



$$\mathbf{A} \in \mathrm{GL}_m(q)$$

$$\mathbf{B} \in \mathrm{GL}_n(q)$$

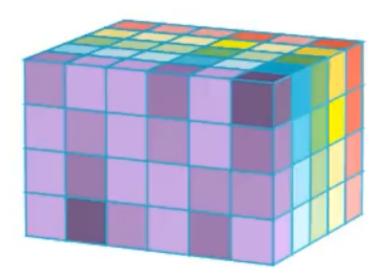
$$\mathbf{T} \in \mathrm{GL}_k(q)$$



$$\mathbf{A} \in \mathrm{GL}_m(q)$$

$$\mathbf{B} \in \mathrm{GL}_n(q)$$

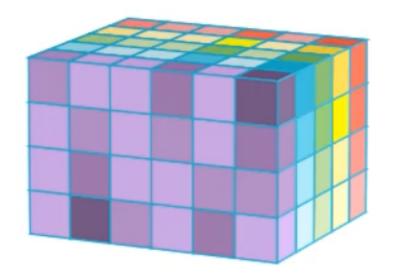
$$\mathbf{T} \in \mathrm{GL}_k(q)$$



$$\mathbf{A} \in \mathrm{GL}_m(q)$$

$$\mathbf{B} \in \mathrm{GL}_n(q)$$

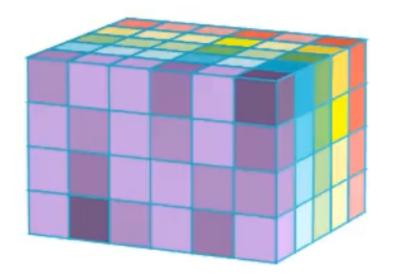
$$\mathbf{T} \in \mathrm{GL}_k(q)$$



$$\mathbf{A} \in \mathrm{GL}_m(q)$$

$$\mathbf{B} \in \mathrm{GL}_n(q)$$

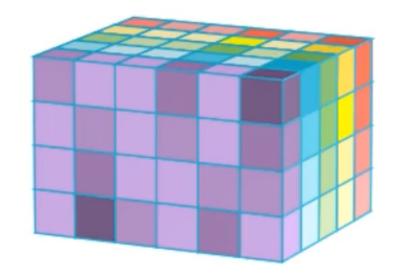
$$\mathbf{T} \in \mathrm{GL}_k(q)$$



$$\mathbf{A} \in \mathrm{GL}_m(q)$$

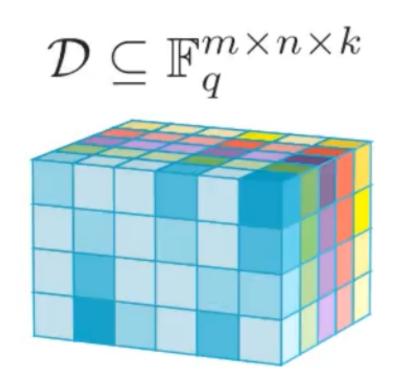
$$\mathbf{B} \in \mathrm{GL}_n(q)$$

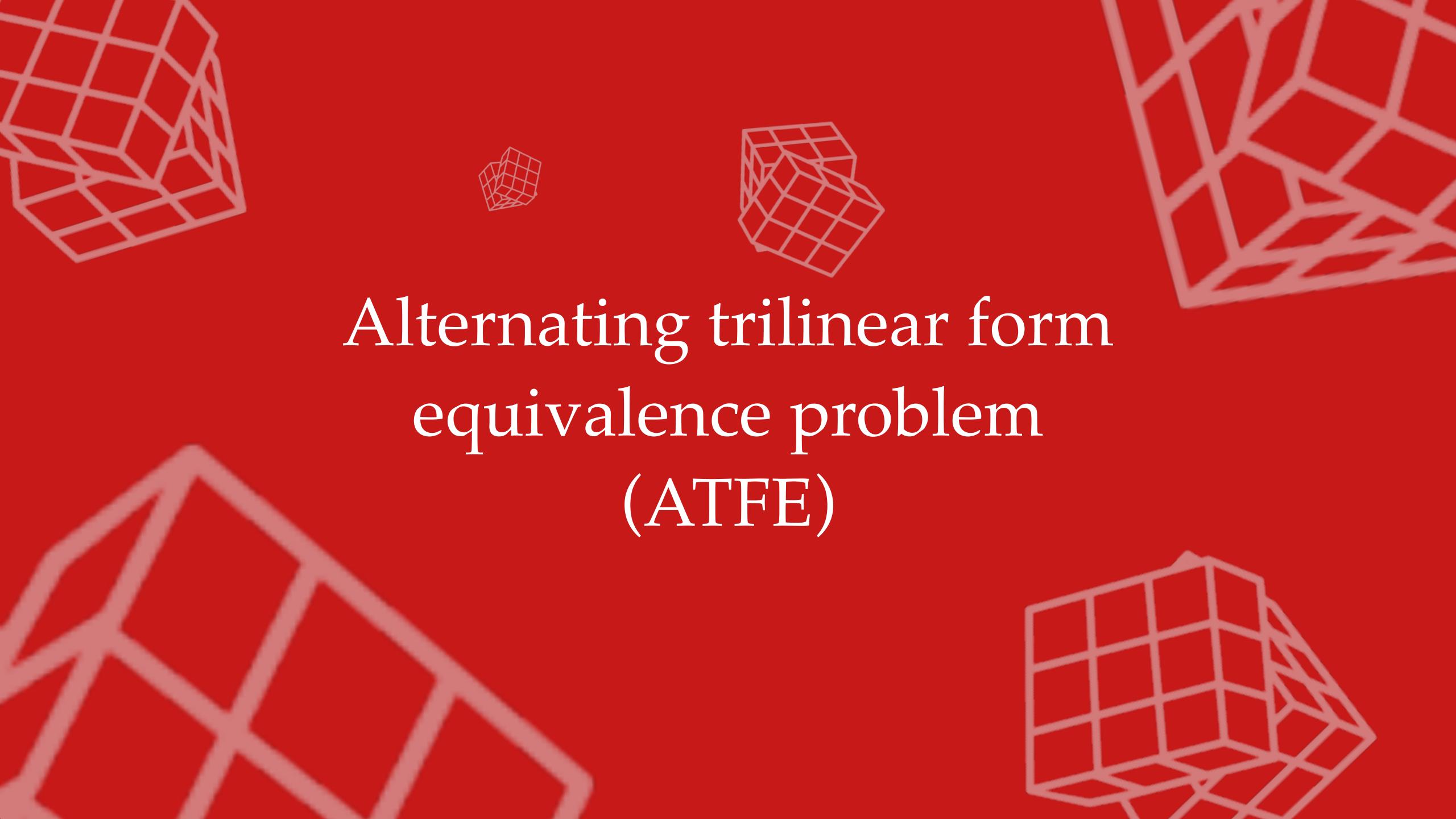
$$\mathbf{T} \in \mathrm{GL}_k(q)$$



$$\mathbf{A} \in \mathrm{GL}_m(q)$$

$$\mathbf{B} \in \mathrm{GL}_n(q)$$





Multilinear forms

k-linear form

A *k*-linear form is a function $\phi : \mathbb{F}_q^n \times ... \times \mathbb{F}_q^n \to \mathbb{F}_q$ that is linear in each argument.

if we fix k-1 arguments, it is linear in the remaining argument.

Multilinear forms

k-linear form

A *k*-linear form is a function $\phi : \mathbb{F}_q^n \times ... \times \mathbb{F}_q^n \to \mathbb{F}_q$ that is linear in each argument.

if we fix k-1 arguments, it is linear in the remaining argument.

Alternating property

 ϕ is alternating : $\phi(\mathbf{x}_1, ..., \mathbf{x}_k) = 0$ whenever $\mathbf{x}_i = \mathbf{x}_j$ for some $i \neq j$.

Multilinear forms

k-linear form

A *k*-linear form is a function $\phi : \mathbb{F}_q^n \times ... \times \mathbb{F}_q^n \to \mathbb{F}_q$ that is linear in each argument.

if we fix k-1 arguments, it is linear in the remaining argument.

Alternating property

 ϕ is alternating: $\phi(\mathbf{x}_1, ..., \mathbf{x}_k) = 0$ whenever $\mathbf{x}_i = \mathbf{x}_j$ for some $i \neq j$.

We focus on trilinear forms: $\phi(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

Bilinear form:

$$\phi(\mathbf{x}, \mathbf{y}) = \sum \gamma_{i,j} x_i y_j$$

 \mathbf{X}

x_1	x_2	x_3	x_4	x_5	x_6

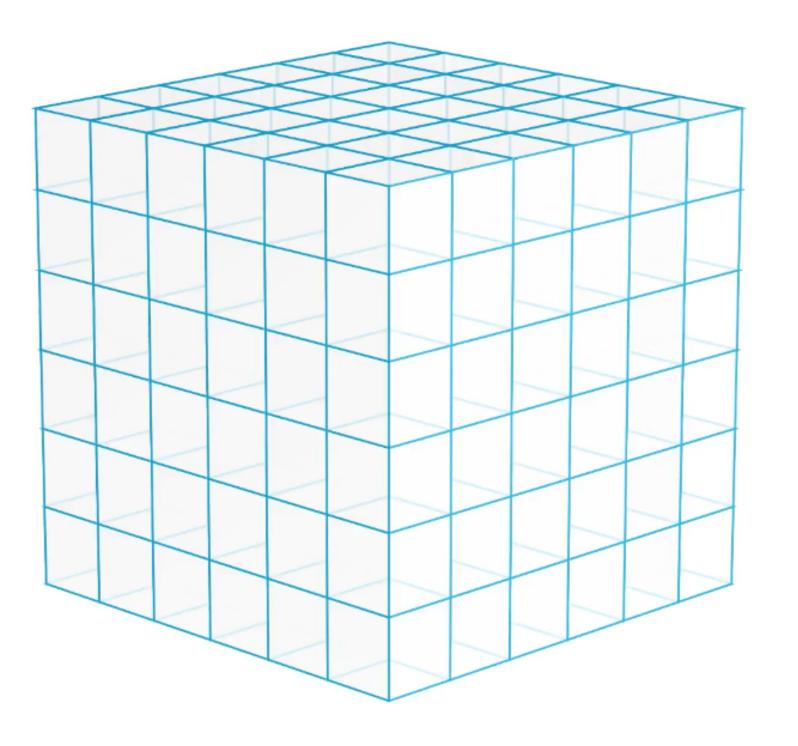
В

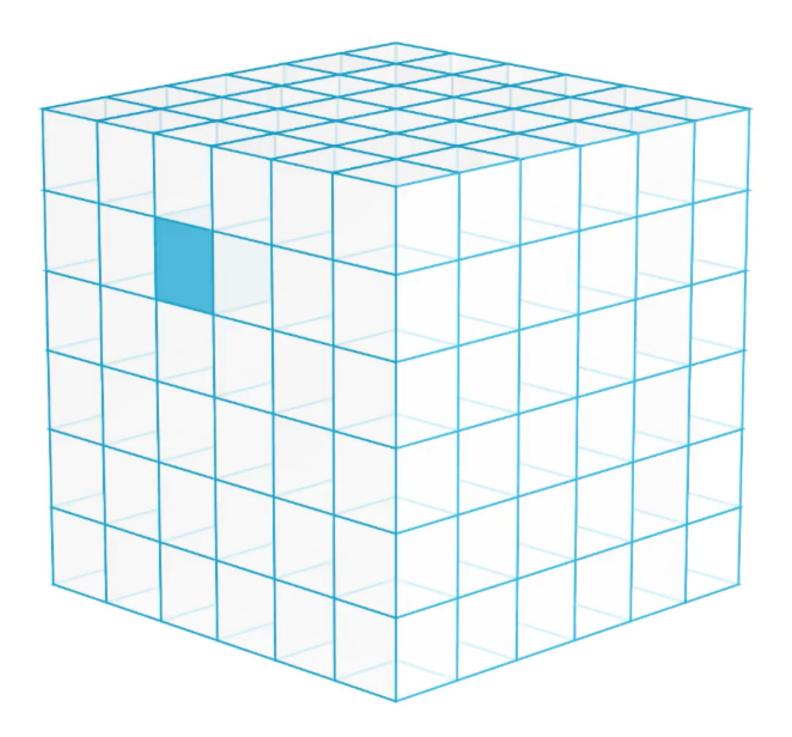
$\gamma_{1,1}$	$\gamma_{1,2}$	$\gamma_{1,3}$	$\gamma_{1,4}$	$\gamma_{1,5}$	$\gamma_{1,6}$
$\gamma_{2,1}$	$\gamma_{2,2}$	$\gamma_{2,3}$	$\gamma_{2,4}$	$\gamma_{2,5}$	$\gamma_{2,6}$
$\gamma_{3,1}$	$\gamma_{3,2}$	$\gamma_{3,3}$	$\gamma_{3,4}$	$\gamma_{3,5}$	$\gamma_{3,6}$
$\gamma_{4,1}$	$\gamma_{4,2}$	$\gamma_{4,3}$	$\gamma_{4,4}$	$\gamma_{4,5}$	$\gamma_{4,6}$
$\gamma_{5,1}$	$\gamma_{5,2}$	$\gamma_{5,3}$	$\gamma_{5,4}$	$\gamma_{5,5}$	$\gamma_{5,6}$
$\gamma_{6,1}$	$\gamma_{6,2}$	$\gamma_{6,3}$	$\gamma_{6,4}$	$\gamma_{6,5}$	$\gamma_{6,6}$

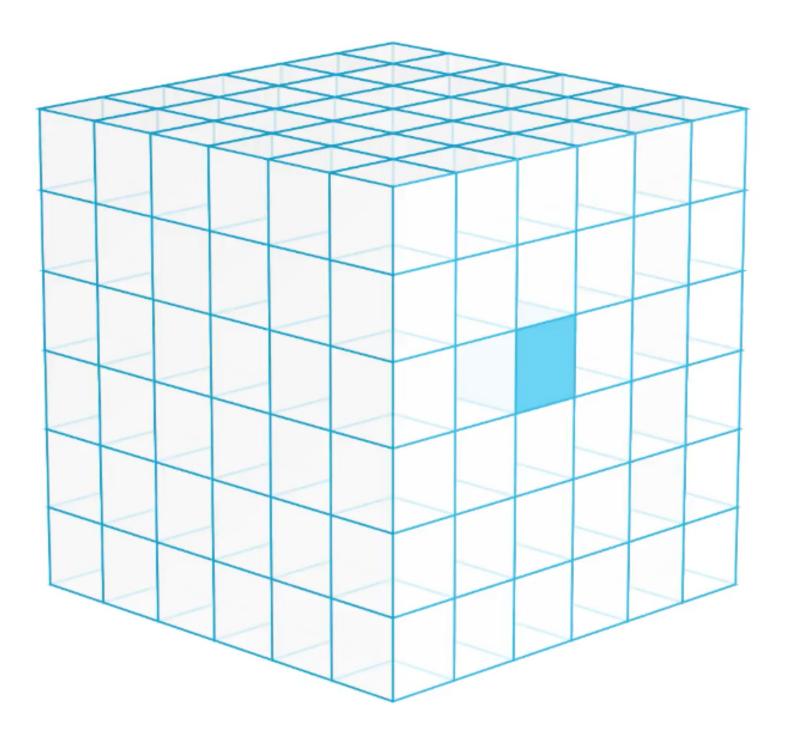
y

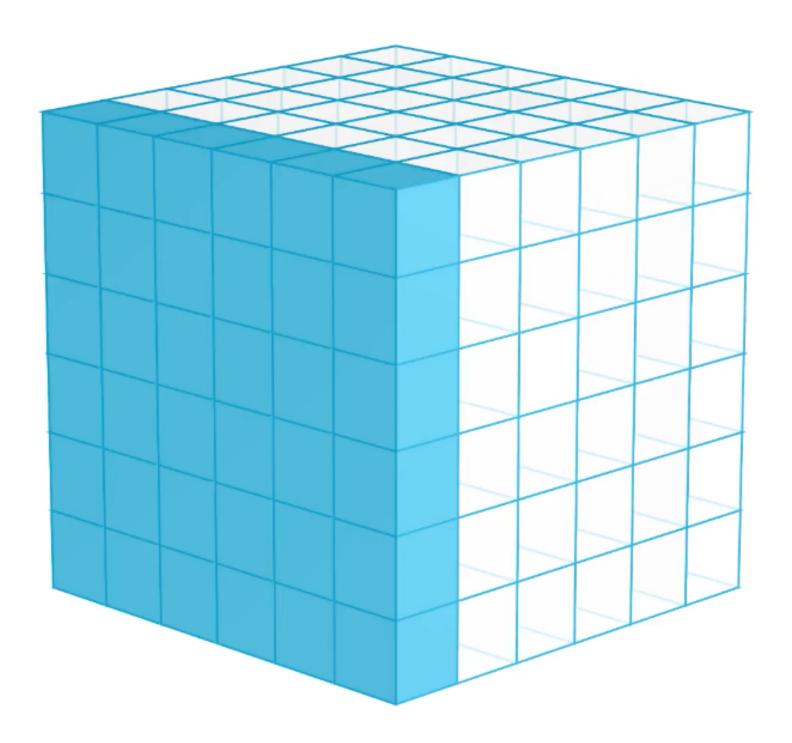
 y_1 y_2 y_3 y_4 y_5 y_6

so with
$$\mathbf{x} = (x_1, \dots, x_n)$$
 and $\mathbf{y} = (y_1, \dots, y_n)$, we get $\phi(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\mathsf{T}} \mathbf{B} \mathbf{y}$.









The alternating property -----, $\phi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = 0$ whenever $\mathbf{x} = \mathbf{y}$ or $\mathbf{x} = \mathbf{z}$ or $\mathbf{y} = \mathbf{z}$.

The alternating property ----- $\phi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = 0$ whenever $\mathbf{x} = \mathbf{y}$ or $\mathbf{x} = \mathbf{z}$ or $\mathbf{y} = \mathbf{z}$.

Compact representation -------

 $\sum_{1 \leq i < j < s \leq n} \gamma_{ijs}(\mathbf{e}_i^* \wedge \mathbf{e}_j^* \wedge \mathbf{e}_s^*), \text{ where } \wedge \text{ denotes the wedge product.}$

The alternating property ----- $\phi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = 0$ whenever $\mathbf{x} = \mathbf{y}$ or $\mathbf{x} = \mathbf{z}$ or $\mathbf{y} = \mathbf{z}$.

Compact representation ------

 $\sum_{1 \le i < j < s \le n} \gamma_{ijs}(\mathbf{e}_i^* \wedge \mathbf{e}_i^* \wedge \mathbf{e}_s^*), \text{ where } \wedge \text{ denotes the wedge product.}$

$$\mathbf{e}_{i}^{*} \wedge \mathbf{e}_{j}^{*} \wedge \mathbf{e}_{s}^{*} \text{ sends } (\mathbf{x}, \mathbf{y}, \mathbf{z}) \text{ to } \begin{vmatrix} x_{i} & y_{i} & z_{i} \\ x_{j} & y_{j} & z_{j} \\ x_{s} & y_{s} & z_{s} \end{vmatrix}$$

The alternating property ------ $\phi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = 0 \text{ whenever } \mathbf{x} = \mathbf{y} \text{ or } \mathbf{x} = \mathbf{z} \text{ or } \mathbf{y} = \mathbf{z}.$

Compact representation ------

 $\sum_{1 \leq i < j < s \leq n} \gamma_{ijs}(\mathbf{e}_i^* \wedge \mathbf{e}_i^* \wedge \mathbf{e}_s^*), \text{ where } \wedge \text{ denotes the wedge product.}$

$$\mathbf{e}_{i}^{*} \wedge \mathbf{e}_{s}^{*} \wedge \mathbf{e}_{s}^{*} \text{ sends } (\mathbf{x}, \mathbf{y}, \mathbf{z}) \text{ to} \begin{vmatrix} x_{i} & y_{i} & z_{i} \\ x_{j} & y_{j} & z_{j} \\ x_{s} & y_{s} & z_{s} \end{vmatrix} = x_{i}y_{j}z_{s} - x_{i}y_{s}z_{j} + x_{s}y_{i}z_{j} - x_{j}y_{i}z_{s} + x_{j}y_{s}z_{i} - x_{s}y_{j}z_{i}$$

The alternating property $\phi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = 0$ whenever $\mathbf{x} = \mathbf{y}$ or $\mathbf{x} = \mathbf{z}$ or $\mathbf{y} = \mathbf{z}$. Compact representation $\sum_{1 \le i < j < s \le n} \gamma_{ijs}(\mathbf{e}_i^* \wedge \mathbf{e}_j^* \wedge \mathbf{e}_s^*)$, where \wedge denotes the wedge product.

* when
$$\mathbf{x} = \mathbf{y}$$

$$\mathbf{e}_{i}^{*} \wedge \mathbf{e}_{s}^{*} \wedge \mathbf{e}_{s}^{*} \text{ sends } (\mathbf{x}, \mathbf{y}, \mathbf{z}) \text{ to} \begin{vmatrix} x_{i} & y_{i} & z_{i} \\ x_{j} & y_{j} & z_{j} \\ x_{s} & y_{s} & z_{s} \end{vmatrix} = x_{i}y_{j}z_{s} - x_{i}y_{s}z_{j} + x_{s}y_{i}z_{j} - x_{j}y_{i}z_{s} + x_{j}y_{s}z_{i} - x_{s}y_{j}z_{i}$$

 $\sum_{1 \le i < j < s \le n} \gamma_{ijs}(\mathbf{e}_i^* \wedge \mathbf{e}_i^* \wedge \mathbf{e}_s^*), \text{ where } \wedge \text{ denotes the wedge product.}$

$$\mathbf{e}_{i}^{*} \wedge \mathbf{e}_{s}^{*} \wedge \mathbf{e}_{s}^{*} \text{ sends } (\mathbf{x}, \mathbf{y}, \mathbf{z}) \text{ to} \begin{vmatrix} x_{i} & y_{i} & z_{i} \\ x_{j} & y_{j} & z_{j} \\ x_{s} & y_{s} & z_{s} \end{vmatrix} = x_{i}y_{j}z_{s} - x_{i}y_{s}z_{j} + x_{s}y_{i}z_{j} - x_{j}y_{i}z_{s} + x_{j}y_{s}z_{i} - x_{s}y_{j}z_{i}$$

* when y = z

* when
$$\mathbf{x} = \mathbf{z}$$

$$\mathbf{e}_{i}^{*} \wedge \mathbf{e}_{j}^{*} \wedge \mathbf{e}_{s}^{*} \text{ sends } (\mathbf{x}, \mathbf{y}, \mathbf{z}) \text{ to} \begin{vmatrix} x_{i} & y_{i} & z_{i} \\ x_{j} & y_{j} & z_{j} \\ x_{s} & y_{s} & z_{s} \end{vmatrix} = x_{i}y_{j}z_{s} - x_{i}y_{s}z_{j} + x_{s}y_{i}z_{j} - x_{j}y_{i}z_{s} + x_{j}y_{s}z_{i} - x_{s}y_{j}z_{i}$$

The alternating property ------ $\phi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = 0 \text{ whenever } \mathbf{x} = \mathbf{y} \text{ or } \mathbf{x} = \mathbf{z} \text{ or } \mathbf{y} = \mathbf{z}.$

Compact representation ------

 $\sum_{1 \leq i < j < s \leq n} \gamma_{ijs}(\mathbf{e}_i^* \wedge \mathbf{e}_i^* \wedge \mathbf{e}_s^*), \text{ where } \wedge \text{ denotes the wedge product.}$

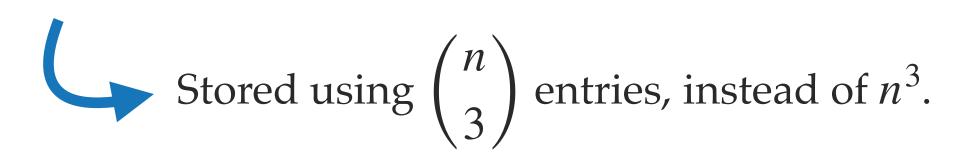
$$\mathbf{e}_{i}^{*} \wedge \mathbf{e}_{s}^{*} \wedge \mathbf{e}_{s}^{*} \text{ sends } (\mathbf{x}, \mathbf{y}, \mathbf{z}) \text{ to} \begin{vmatrix} x_{i} & y_{i} & z_{i} \\ x_{j} & y_{j} & z_{j} \\ x_{s} & y_{s} & z_{s} \end{vmatrix} = x_{i}y_{j}z_{s} - x_{i}y_{s}z_{j} + x_{s}y_{i}z_{j} - x_{j}y_{i}z_{s} + x_{j}y_{s}z_{i} - x_{s}y_{j}z_{i}$$

The alternating property ------ $\phi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = 0$ whenever $\mathbf{x} = \mathbf{y}$ or $\mathbf{x} = \mathbf{z}$ or $\mathbf{y} = \mathbf{z}$.

Compact representation ------

 $\sum_{1 \le i < j < s \le n} \gamma_{ijs}(\mathbf{e}_i^* \wedge \mathbf{e}_i^* \wedge \mathbf{e}_s^*), \text{ where } \wedge \text{ denotes the wedge product. }$

$$\mathbf{e}_{i}^{*} \wedge \mathbf{e}_{j}^{*} \wedge \mathbf{e}_{s}^{*} \text{ sends } (\mathbf{x}, \mathbf{y}, \mathbf{z}) \text{ to} \begin{vmatrix} x_{i} & y_{i} & z_{i} \\ x_{j} & y_{j} & z_{j} \\ x_{s} & y_{s} & z_{s} \end{vmatrix} = x_{i}y_{j}z_{s} - x_{i}y_{s}z_{j} + x_{s}y_{i}z_{j} - x_{j}y_{i}z_{s} + x_{j}y_{s}z_{i} - x_{s}y_{j}z_{i}$$



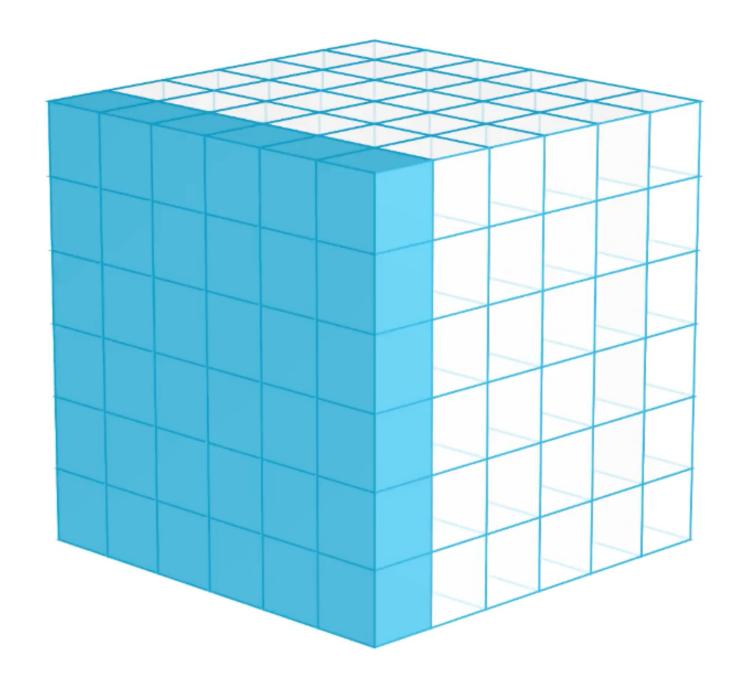
Alternating trilinear form equivalence

The Alternating Trilinear Form Equivalence (ATFE) problem

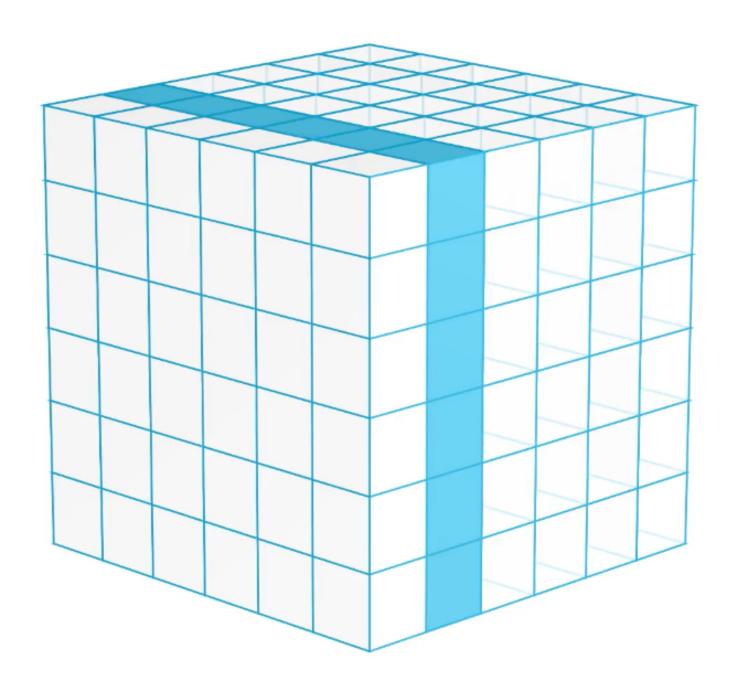
Input: Two alternating trilinear forms ϕ , ψ .

Question: Find - if any - $\mathbf{A} \in \mathrm{GL}_n(\mathbb{F}_q)$ such that $\phi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \psi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, \mathbf{A}\mathbf{z})$.

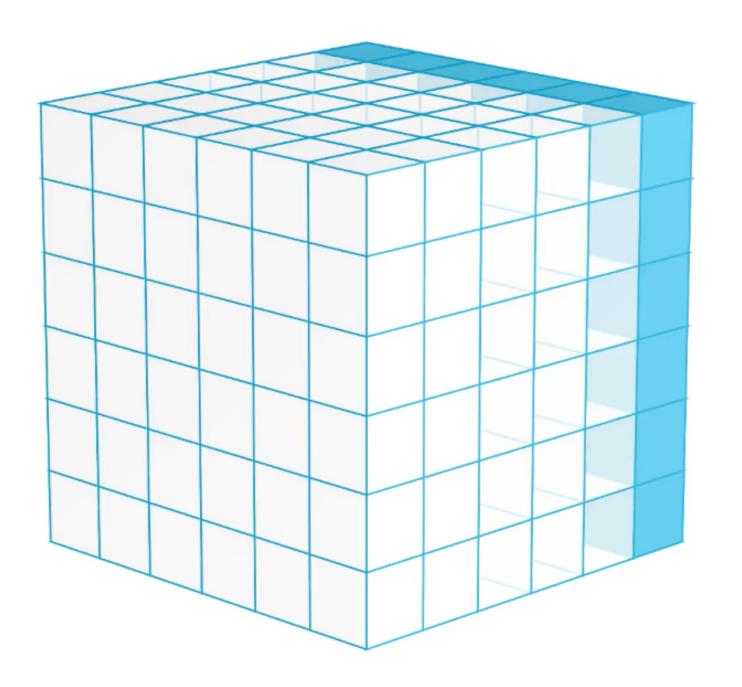
Let
$$\phi^{(1)}(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x}, \mathbf{y}, \mathbf{e}_1)$$

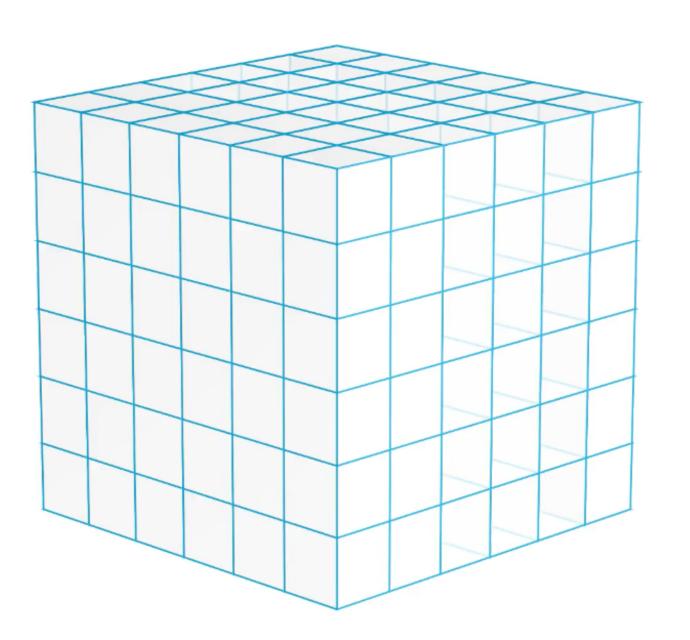


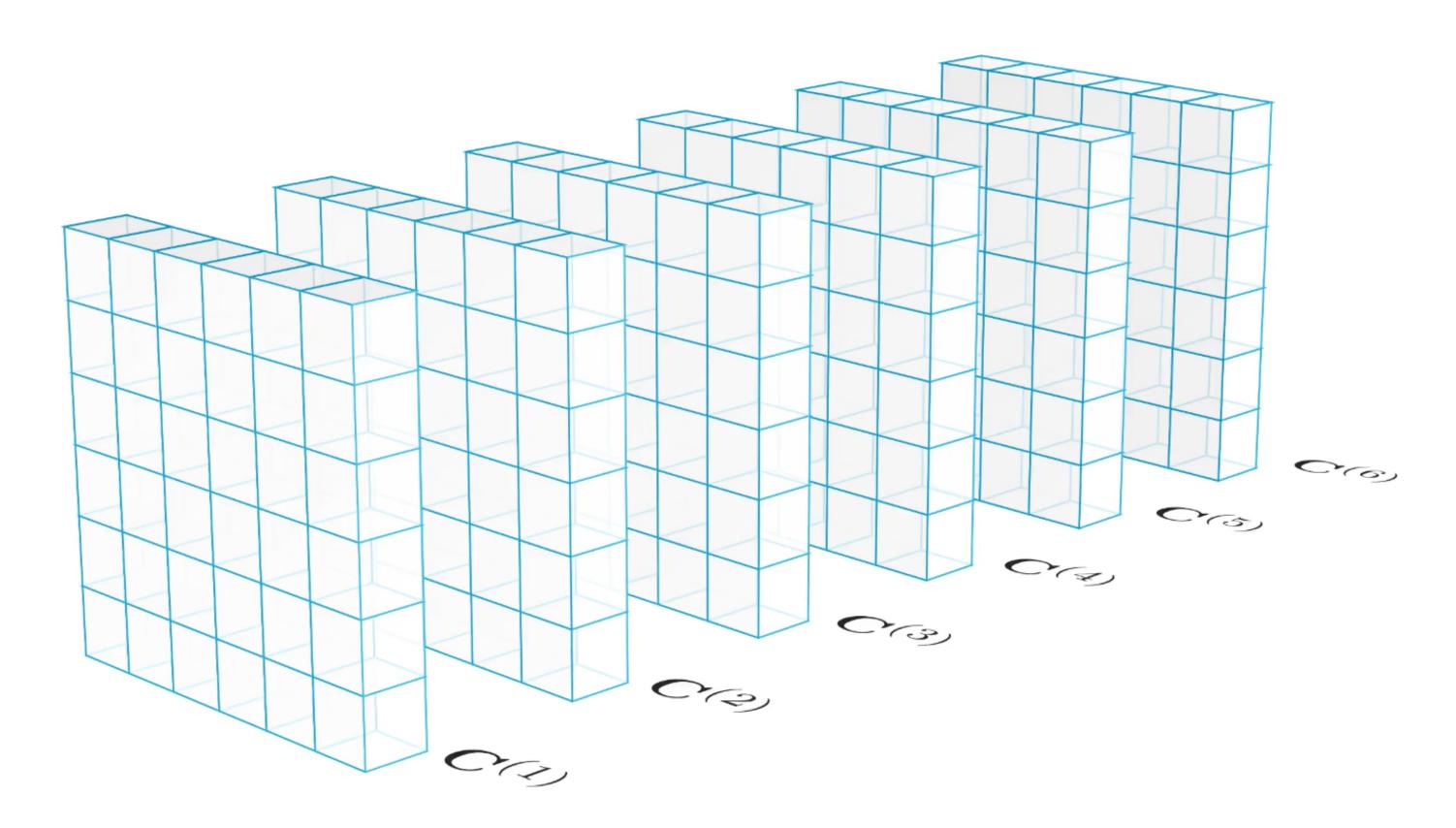
Let
$$\phi^{(2)}(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x}, \mathbf{y}, \mathbf{e}_2)$$



..Let
$$\phi^{(n)}(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x}, \mathbf{y}, \mathbf{e}_n)$$

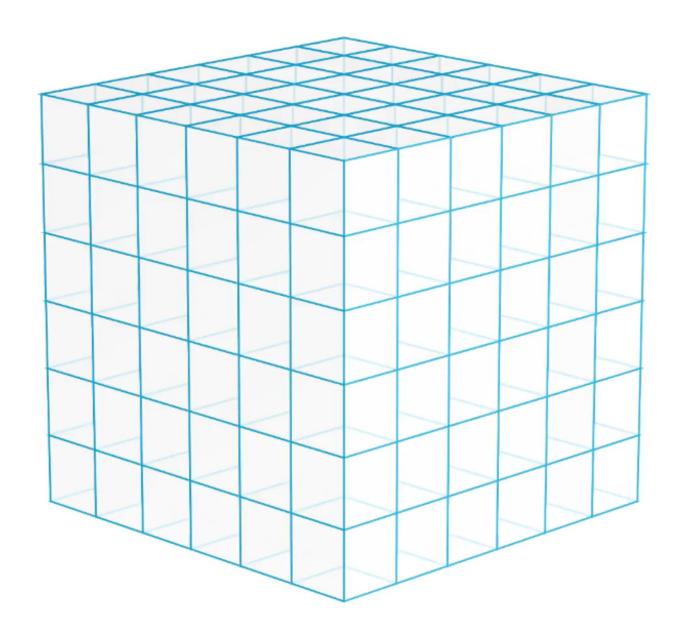




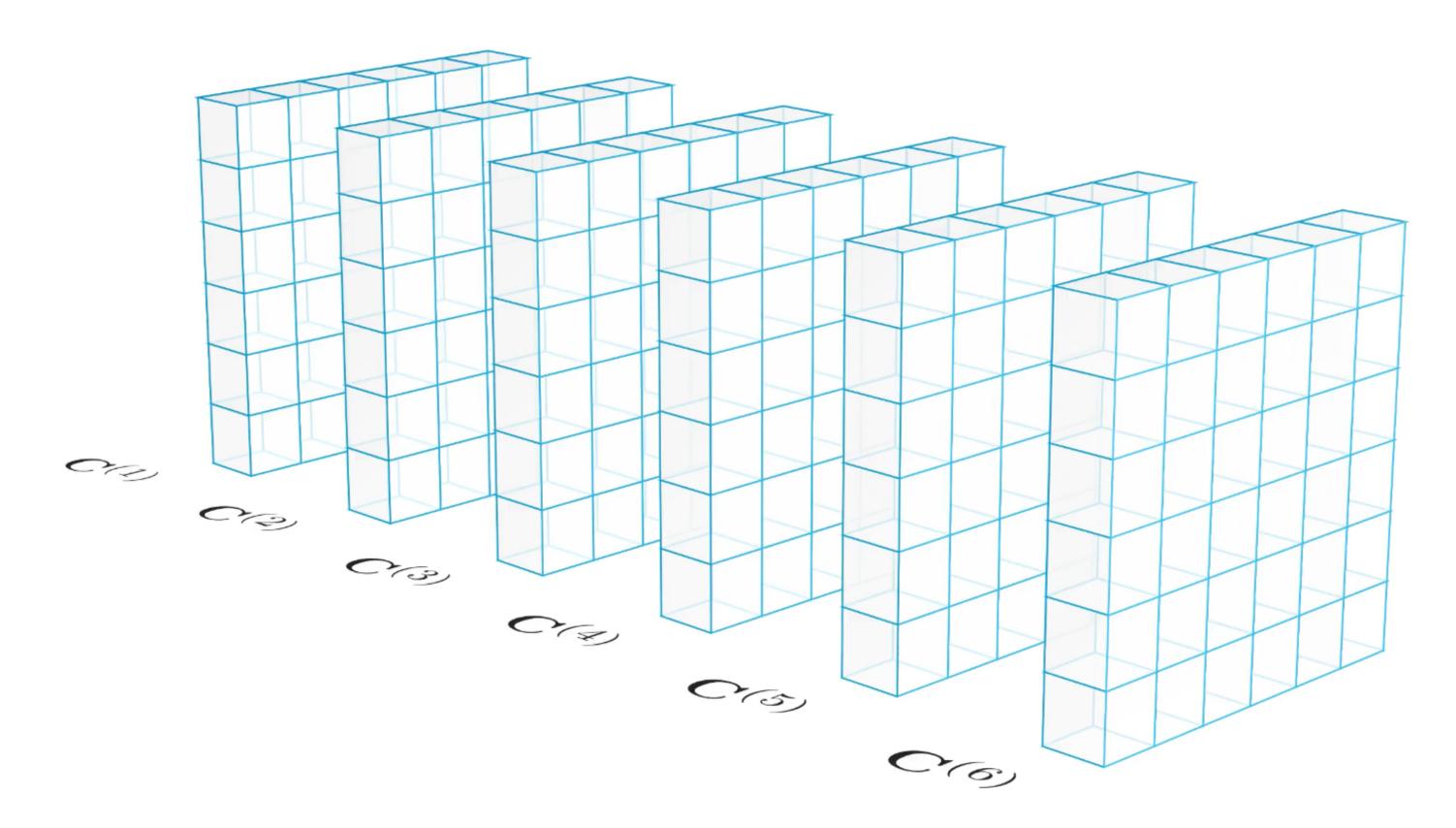


Take $(\mathbf{C}^{(1)}, \dots, \mathbf{C}^{(n)})$ as a basis of an *n*-dimensional matrix code

Let
$$\phi^{(i)}(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x}, \mathbf{e}_i, \mathbf{z})$$

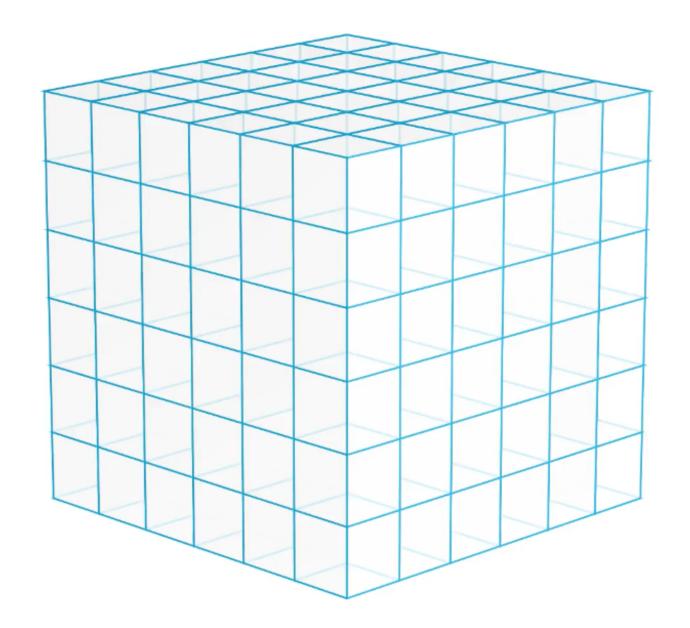


Let
$$\phi^{(i)}(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x}, \mathbf{e}_i, \mathbf{z})$$

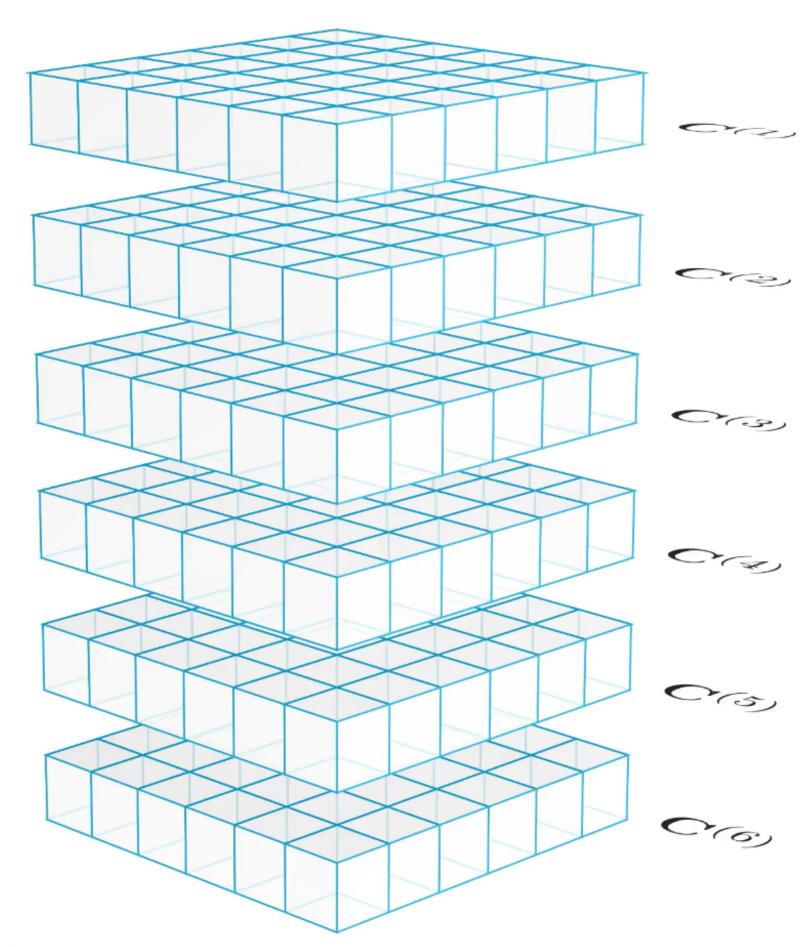


Take $(\mathbf{C}^{(1)}, \dots, \mathbf{C}^{(n)})$ as a basis of an *n*-dimensional matrix code

Let
$$\phi^{(i)}(\mathbf{y}, \mathbf{z}) = \phi(\mathbf{e}_i, \mathbf{y}, \mathbf{z})$$



Let $\phi^{(i)}(\mathbf{y}, \mathbf{z}) = \phi(\mathbf{e}_i, \mathbf{y}, \mathbf{z})$



Take $(\mathbf{C}^{(1)}, \dots, \mathbf{C}^{(n)})$ as a basis of an *n*-dimensional matrix code

Let (n, ϕ, ψ) be a positive ATFE instance.

Let (n, ϕ, ψ) be a positive ATFE instance.

$$\begin{split} \psi^{(i)}(\mathbf{x}, \mathbf{y}) &= \\ &= \psi(\mathbf{x}, \mathbf{y}, \mathbf{e}_i) = \\ &= \phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, \mathbf{A}\mathbf{e}_i) = \\ &= \phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, a_{1i}\mathbf{e}_1 + \dots + a_{ni}\mathbf{e}_n) = \\ &= \sum_{1 \leq j \leq n} a_{ji}\phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, \mathbf{e}_j) = \\ &= \sum_{1 \leq j \leq n} a_{ji}\phi^{(j)}(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}) \end{split}$$

Let (n, ϕ, ψ) be a positive ATFE instance.

$$\psi^{(i)}(\mathbf{x}, \mathbf{y}) =$$

$$= \psi(\mathbf{x}, \mathbf{y}, \mathbf{e}_i) =$$

$$= \phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, \mathbf{A}\mathbf{e}_i) =$$

$$= \phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, a_{1i}\mathbf{e}_1 + \dots + a_{ni}\mathbf{e}_n) =$$

$$= \sum_{1 \le j \le n} a_{ji}\phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, \mathbf{e}_j) =$$

$$= \sum_{1 \le j \le n} a_{ji}\phi^{(j)}(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y})$$

Let (n, ϕ, ψ) be a positive ATFE instance.

$$\psi^{(i)}(\mathbf{x}, \mathbf{y}) =$$

$$= \psi(\mathbf{x}, \mathbf{y}, \mathbf{e}_i) =$$

$$= \phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, \mathbf{A}\mathbf{e}_i) =$$

$$= \phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, a_{1i}\mathbf{e}_1 + \dots + a_{ni}\mathbf{e}_n) =$$

$$= \sum_{1 \leq j \leq n} a_{ji}\phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, \mathbf{e}_j) =$$

$$= \sum_{1 \leq j \leq n} a_{ji}\phi^{(j)}(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y})$$

Rewrite in matrix form:

$$\mathbf{x}^{\mathsf{T}}\mathbf{D}^{(i)}\mathbf{y} = \sum_{1 \leq j \leq n} a_{ji}(\mathbf{A}\mathbf{x})^{\mathsf{T}}\mathbf{C}^{(j)}(\mathbf{A}\mathbf{y}), \quad \forall i, 1 \leq i \leq n$$

ATFE --- MCE

Let (n, ϕ, ψ) be a positive ATFE instance.

$$\psi^{(i)}(\mathbf{x}, \mathbf{y}) =$$

$$= \psi(\mathbf{x}, \mathbf{y}, \mathbf{e}_i) =$$

$$= \phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, \mathbf{A}\mathbf{e}_i) =$$

$$= \phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, a_{1i}\mathbf{e}_1 + \dots + a_{ni}\mathbf{e}_n) =$$

$$= \sum_{1 \leq j \leq n} a_{ji}\phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, \mathbf{e}_j) =$$

$$= \sum_{1 \leq j \leq n} a_{ji}\phi^{(j)}(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y})$$

Rewrite in matrix form:

$$\mathbf{D}^{(i)} = \sum_{1 \leq j \leq n} a_{ji} \mathbf{A}^{\mathsf{T}} \mathbf{C}^{(j)} \mathbf{A}, \quad \forall i, 1 \leq i \leq n$$

ATFE --- MCE

Let (n, ϕ, ψ) be a positive ATFE instance.

$$\psi^{(i)}(\mathbf{x}, \mathbf{y}) =$$

$$= \psi(\mathbf{x}, \mathbf{y}, \mathbf{e}_i) =$$

$$= \phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, \mathbf{A}\mathbf{e}_i) =$$

$$= \phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, a_{1i}\mathbf{e}_1 + \dots + a_{ni}\mathbf{e}_n) =$$

$$= \sum_{1 \leq j \leq n} a_{ji}\phi(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y}, \mathbf{e}_j) =$$

$$= \sum_{1 \leq j \leq n} a_{ji}\phi^{(j)}(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y})$$

Rewrite in matrix form:

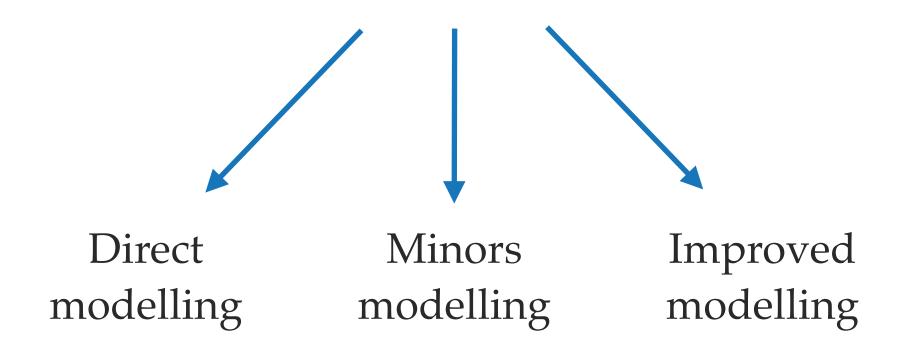
$$\mathbf{D}^{(i)} = \sum_{1 \leq j \leq n} a_{ji} \mathbf{A}^{\mathsf{T}} \mathbf{C}^{(j)} \mathbf{A}, \quad \forall i, 1 \leq i \leq n$$

Algebraic attacks

Attacks reducing MCE/ATFE to the problem of solving a system of polynomial equations.

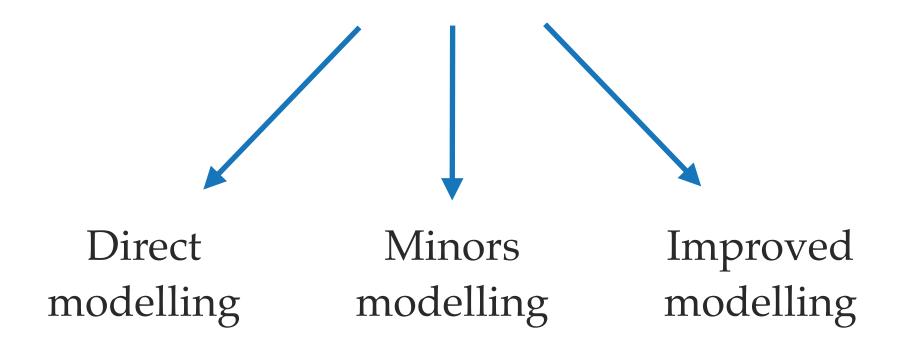
Algebraic attacks

Attacks reducing MCE/ATFE to the problem of solving a system of polynomial equations.



Algebraic attacks

Attacks reducing MCE/ATFE to the problem of solving a system of polynomial equations.



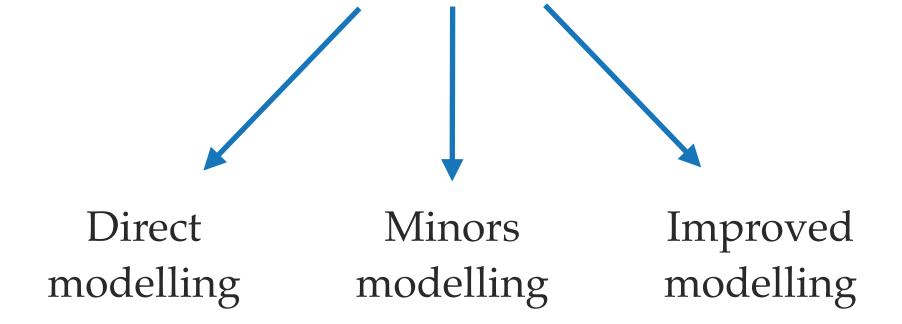
Combinatorial attacks

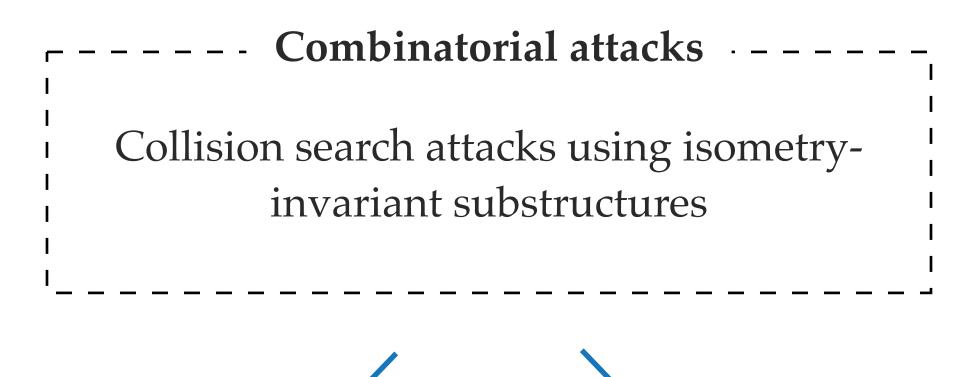
Collision search attacks using isometryinvariant substructures

Cryptanalysis

Algebraic attacks

Attacks reducing MCE/ATFE to the problem of solving a system of polynomial equations.





Leon-like algorithm

Direct algebraic attack

The MCE problem in matrix form

Let $(\mathbf{C}^{(1)},...,\mathbf{C}^{(k)})$ be a basis of code $\mathscr C$ and let $(\mathbf{D}^{(1)},...,\mathbf{D}^{(k)})$ be a basis of code $\mathscr D$. Find $\mathbf{A} \in \mathrm{GL}_m(\mathbb F_q)$, $\mathbf{B} \in \mathrm{GL}_n(\mathbb F_q)$ and $\mathbf{T} \in \mathrm{GL}_k(\mathbb F_q)$ such that

$$\mathbf{D}^{(i)} = \sum_{1 \le j \le k} t_{j,i} \mathbf{A} \mathbf{C}^{(j)} \mathbf{B}, \quad \forall 1 \le i \le k$$

Direct algebraic attack

The MCE problem in matrix form

Let $(\mathbf{C}^{(1)},...,\mathbf{C}^{(k)})$ be a basis of code $\mathscr C$ and let $(\mathbf{D}^{(1)},...,\mathbf{D}^{(k)})$ be a basis of code $\mathscr D$. Find $\mathbf{A} \in \mathrm{GL}_m(\mathbb F_q)$, $\mathbf{B} \in \mathrm{GL}_n(\mathbb F_q)$ and $\mathbf{T} \in \mathrm{GL}_k(\mathbb F_q)$ such that

$$\mathbf{D}^{(i)} = \sum_{1 \le j \le k} t_{j,i} \mathbf{A} \mathbf{C}^{(j)} \mathbf{B}, \quad \forall 1 \le i \le k$$

Alternatively, this gives a better modelling:

$$\sum_{1 \le j \le k} t_{j,i} \mathbf{D}^{(j)} = \mathbf{A} \mathbf{C}^{(i)} \mathbf{B}, \quad \forall 1 \le i \le k$$

$$\mathbf{G} = \begin{pmatrix} \operatorname{Vec}(\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}) \\ \operatorname{Vec}(\mathbf{D}^{(1)}) \\ \vdots \\ \operatorname{Vec}(\mathbf{D}^{(n)}) \end{pmatrix}$$

$$\mathbf{G} = \begin{pmatrix} \operatorname{Vec}(\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}) \\ \operatorname{Vec}(\mathbf{D}^{(1)}) \\ \vdots \end{pmatrix}$$

For a matrix $\mathbf{C} \in \mathcal{M}_{m,n}(\mathbb{F}_q)$, let Vec be a mapping that sends a matrix \mathbf{C} to the vector $\operatorname{Vec}(\mathbf{C}) \in \mathbb{F}_q^{mn}$ obtained by 'flattening' \mathbf{C} :

$$\text{Vec}: \mathbf{C} = \begin{pmatrix} c_{1,1} & \dots & c_{1,n} \\ \vdots & \ddots & \vdots \\ c_{m,1} & \dots & c_{m,n} \end{pmatrix} \mapsto \text{Vec}(\mathbf{C}) = (c_{1,1}, \dots, c_{1,n}, \dots, c_{m,1}, \dots, c_{m,n})$$

$$\mathbf{G} = \begin{pmatrix} \operatorname{Vec}(\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}) \\ \operatorname{Vec}(\mathbf{D}^{(1)}) \\ \vdots \\ \operatorname{Vec}(\mathbf{D}^{(n)}) \end{pmatrix}$$

$$\mathbf{G} = \begin{pmatrix} \operatorname{Vec}(\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}) \\ \operatorname{Vec}(\mathbf{D}^{(1)}) \\ \vdots \\ \operatorname{Vec}(\mathbf{D}^{(n)}) \end{pmatrix}$$

 \longrightarrow $\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}$ is a codeword in \mathscr{D} .

 \longrightarrow All the minors of G are zero.

$$\mathbf{G} = \begin{pmatrix} \mathbf{Vec}(\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}) \\ \mathbf{Vec}(\mathbf{D}^{(1)}) \\ \vdots \\ \mathbf{Vec}(\mathbf{D}^{(n)}) \end{pmatrix}$$

 $\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}$ is a codeword in \mathscr{D} .

All the minors of **G** are zero.

$$\mathbf{G} = \begin{pmatrix} \operatorname{Vec}(\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}) \\ \operatorname{Vec}(\mathbf{D}^{(1)}) \\ \vdots \\ \operatorname{Vec}(\mathbf{D}^{(n)}) \end{pmatrix}$$

 $\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}$ is a codeword in \mathscr{D} .

All the minors of **G** are zero.

$$\mathbf{G} = \begin{pmatrix} \operatorname{Vec}(\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}) \\ \operatorname{Vec}(\mathbf{D}^{(i)}) \\ \vdots \\ \operatorname{Vec}(\mathbf{D}^{(n)}) \end{pmatrix}$$

 $\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}$ is a codeword in \mathscr{D} .

All the minors of **G** are zero.

$$\mathbf{G} = \begin{pmatrix} \operatorname{Vec}(\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}) \\ \operatorname{Vec}(\mathbf{D}^{(1)}) \\ \vdots \\ \operatorname{Vec}(\mathbf{D}^{(n)}) \end{pmatrix}$$

 \longrightarrow $\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}$ is a codeword in \mathscr{D} .

 \longrightarrow All the minors of G are zero.

$$\mathbf{G} = \begin{pmatrix} \operatorname{Vec}(\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}) \\ \operatorname{Vec}(\mathbf{D}^{(1)}) \\ \vdots \\ \operatorname{Vec}(\mathbf{D}^{(n)}) \end{pmatrix}$$

MCE

ATFE

$$\mathbf{G} = \begin{pmatrix} \operatorname{Vec}(\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}) \\ \operatorname{Vec}(\mathbf{D}^{(1)}) \\ \vdots \\ \operatorname{Vec}(\mathbf{D}^{(n)}) \end{pmatrix}$$

MCE

Bilinear system of

- k(nm k) equations
- $n^2 + m^2$ variables

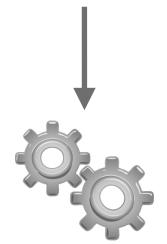
ATFE

$$\mathbf{G} = \begin{pmatrix} \operatorname{Vec}(\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}) \\ \operatorname{Vec}(\mathbf{D}^{(1)}) \\ \vdots \\ \operatorname{Vec}(\mathbf{D}^{(n)}) \end{pmatrix}$$

MCE

Bilinear system of

- k(nm k) equations
- $n^2 + m^2$ variables



Algebraic solver for bilinear systems (Gröbner basis)

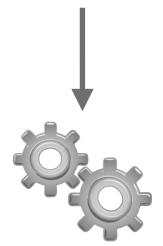
ATFE

$$\mathbf{G} = \begin{pmatrix} \operatorname{Vec}(\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}) \\ \operatorname{Vec}(\mathbf{D}^{(1)}) \\ \vdots \\ \operatorname{Vec}(\mathbf{D}^{(n)}) \end{pmatrix}$$

MCE

Bilinear system of

- k(nm k) equations
- $n^2 + m^2$ variables



Algebraic solver for bilinear systems (Gröbner basis)

ATFE

Quadratic system of

•
$$n(\binom{n}{2} - n)$$
 equations

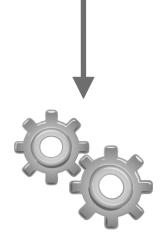
• n^2 variables

$$\mathbf{G} = \begin{pmatrix} \operatorname{Vec}(\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}) \\ \operatorname{Vec}(\mathbf{D}^{(1)}) \\ \vdots \\ \operatorname{Vec}(\mathbf{D}^{(n)}) \end{pmatrix}$$

MCE

Bilinear system of

- k(nm k) equations
- $n^2 + m^2$ variables



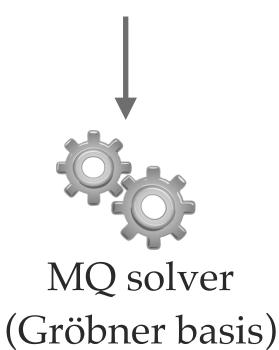
Algebraic solver for bilinear systems (Gröbner basis)

ATFE

Quadratic system of

•
$$n(\binom{n}{2} - n)$$
 equations

• n^2 variables

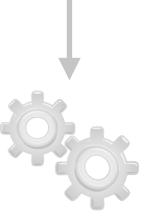


$$\mathbf{G} = \begin{pmatrix} \operatorname{Vec}(\mathbf{A}^{\mathsf{T}}\mathbf{C}^{(i)}\mathbf{B}) \\ \operatorname{Vec}(\mathbf{D}^{(1)}) \\ \vdots \\ \operatorname{Vec}(\mathbf{D}^{(n)}) \end{pmatrix}$$

MCE

Bilinear system of

- k(nm k) equations
- $n^2 + m^2$ variables



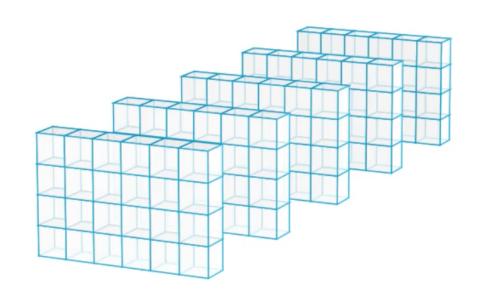
Algebraic solver for bilinear systems (Gröbner basis)

NIST Sec. level	$\mid n \mid$	igg q	Tang et al. $[TDJ^+22]$	Beullens [Beu22]	ALTEQ specs. $[BDN^+23]$	Our work
	9	$2^{18}-1$	133	38		99
	10	$2^{17}-1$	133	122		105
	11	$2^{16} - 5$	138	85		109
I	13	$2^{32} - 5$			143^a	120
III	20	$2^{32}-5$			219^a	165
V	25	$2^{32}-5$			252^b	203

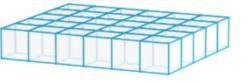
Improved modelling

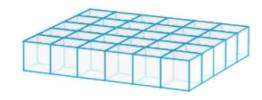
(Recall) we can see $\mathscr C$ from three directions

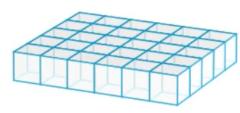
• a k-dimensional code in $\mathbb{F}_q^{m \times n}$



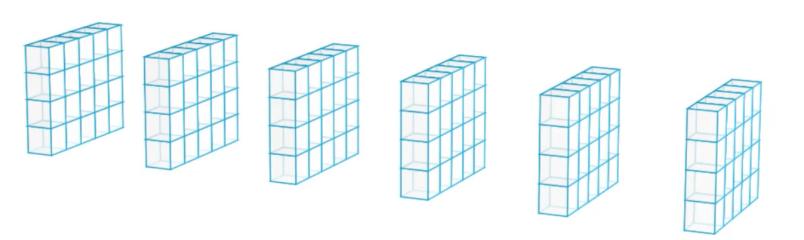
• an *m*-dimensional code in $\mathbb{F}_q^{n \times k}$







• an *n*-dimensional code in $\mathbb{F}_q^{m \times k}$



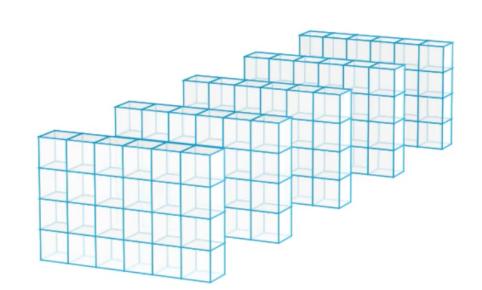
Improved modelling

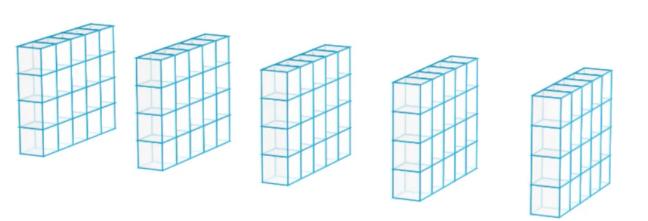
(Recall) we can see $\operatorname{\mathscr{C}}$ from three directions

• a k-dimensional code in $\mathbb{F}_q^{m \times n}$

• an *m*-dimensional code in $\mathbb{F}_q^{n \times k}$

• an *n*-dimensional code in $\mathbb{F}_q^{m \times k}$





The complexity of the minors modelling is $\min(GB(n^2 + m^2, k(nm - k), GB(n^2 + k^2, m(nk - m), GB(k^2 + m^2, n(km - n)))$

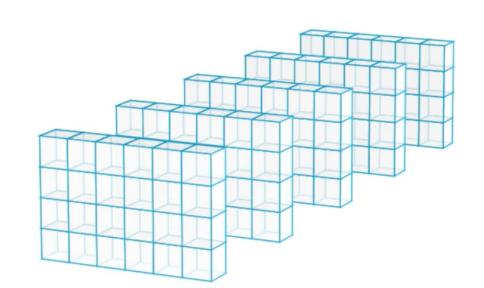
Improved modelling

(Recall) we can see $\operatorname{\mathscr{C}}$ from three directions

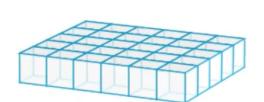
• a *k*-dimensional code in $\mathbb{F}_q^{m \times n}$

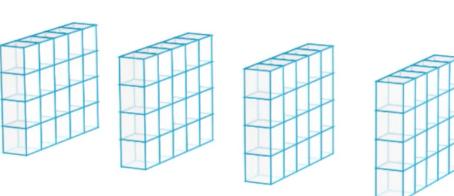
• an *m*-dimensional code in $\mathbb{F}_q^{n \times k}$

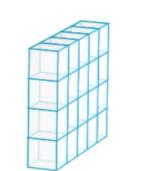
• an *n*-dimensional code in $\mathbb{F}_q^{m \times k}$

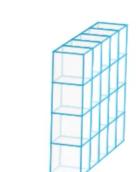


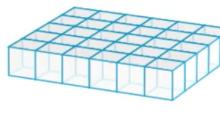












The complexity of the minors modelling is $\min(GB(n^2 + m^2, k(nm - k), GB(n^2 + k^2, m(nk - m), GB(k^2 + m^2, n(km - n)))$

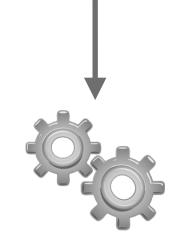
Include all three packets of constraints!

Improved modelling: complexity

MCE

Tri-homogeneous system of

- k(nm k) equations of tri-degree (1,1,0) m(nk - m) equations of tri-degree (1,0,1) n(km - n) equations of tri-degree (0,0,1)
- $n^2 + m^2 + k^2$ variables



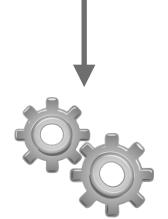
Algebraic solver (Gröbner basis)

Improved modelling: complexity

MCE

Tri-homogeneous system of

- k(nm k) equations of tri-degree (1,1,0) m(nk - m) equations of tri-degree (1,0,1)
- n(km n) equations of tri-degree (0,0,1)
- $n^2 + m^2 + k^2$ variables



Algebraic solver (Gröbner basis)

ATFE

No added constraints.

We have a collision when we know a codeword ${\bf C}$ in ${\mathscr C}$ that maps to a codeword ${\bf D}$ in ${\mathscr D}$.

$$\mathbf{D} = \mathbf{ACB}$$

We have a collision when we know a codeword ${\bf C}$ in ${\mathscr C}$ that maps to a codeword ${\bf D}$ in ${\mathscr D}$.

$$\mathbf{D} = \mathbf{ACB}$$

$$\mathbf{A}^{-1}\mathbf{D} = \mathbf{C}\mathbf{B}$$

With two collisions, we get the following system

$$\mathbf{A}^{-1}\mathbf{D}_1 = \mathbf{C}_1\mathbf{B}$$
$$\mathbf{A}^{-1}\mathbf{D}_2 = \mathbf{C}_2\mathbf{B}$$

With two collisions, we get the following system

$$\mathbf{A}^{-1}\mathbf{D}_1 = \mathbf{C}_1\mathbf{B}$$
$$\mathbf{A}^{-1}\mathbf{D}_2 = \mathbf{C}_2\mathbf{B}$$

When n = m = k, results in a linear system with the same number of variables and equations.

With two collisions, we get the following system

$$\mathbf{A}^{-1}\mathbf{D}_1 = \mathbf{C}_1\mathbf{B}$$
$$\mathbf{A}^{-1}\mathbf{D}_2 = \mathbf{C}_2\mathbf{B}$$

- When n = m = k, results in a linear system with the same number of variables and equations.
 - \longrightarrow If C_1, C_2, D_1, D_2 are all full rank, we should have a unique solution.
 - \longrightarrow We can easily recover **A** from \mathbf{A}^{-1} .

We have a collision when we know a codeword ${\bf C}$ in ${\mathscr C}$ that maps to a codeword ${\bf D}$ in ${\mathscr D}$.

$$\mathbf{D} = \mathbf{ACB}$$

$$\mathbf{A}^{-1}\mathbf{D} = \mathbf{C}\mathbf{B}$$

We have a collision when we know a codeword ${\bf C}$ in ${\mathscr C}$ that maps to a codeword ${\bf D}$ in ${\mathscr D}$.

$$\mathbf{D} = \mathbf{ACB}$$

We can then infer linear constraints from

$$\mathbf{A}^{-1}\mathbf{D} = \mathbf{C}\mathbf{B}$$

If we add these linear constraints to the system obtained from the algebraic attack, we can (sometimes) efficiently solve the system of equations and recover the isometry.

The birthday paradox

The birthday paradox

⊤ The birthday problem in collision search algorithms

We draw, randomly, elements from a set of size *N*.

How many times do we expect to draw an element before we get the same element twice?

General collision attack

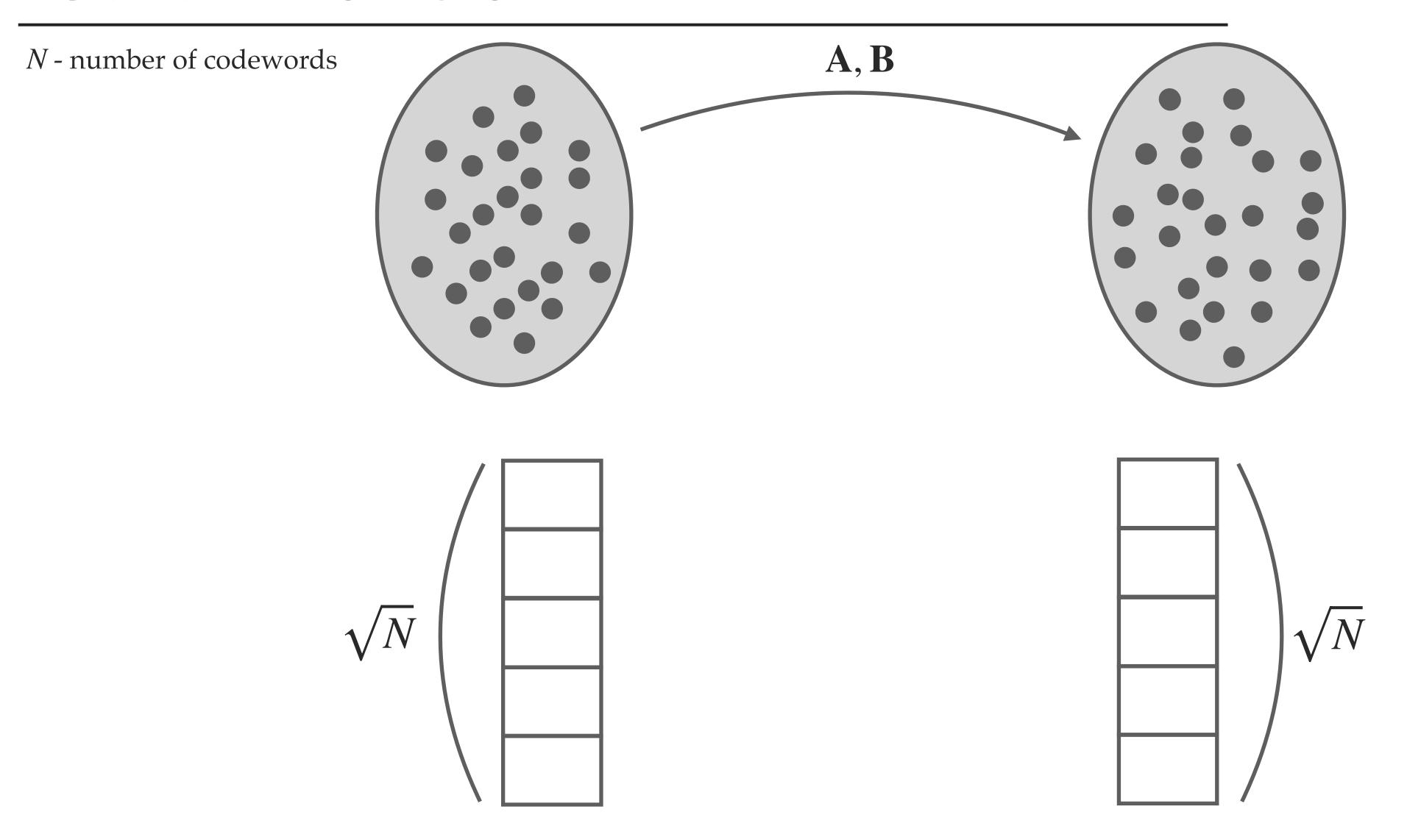
N - number of codewords

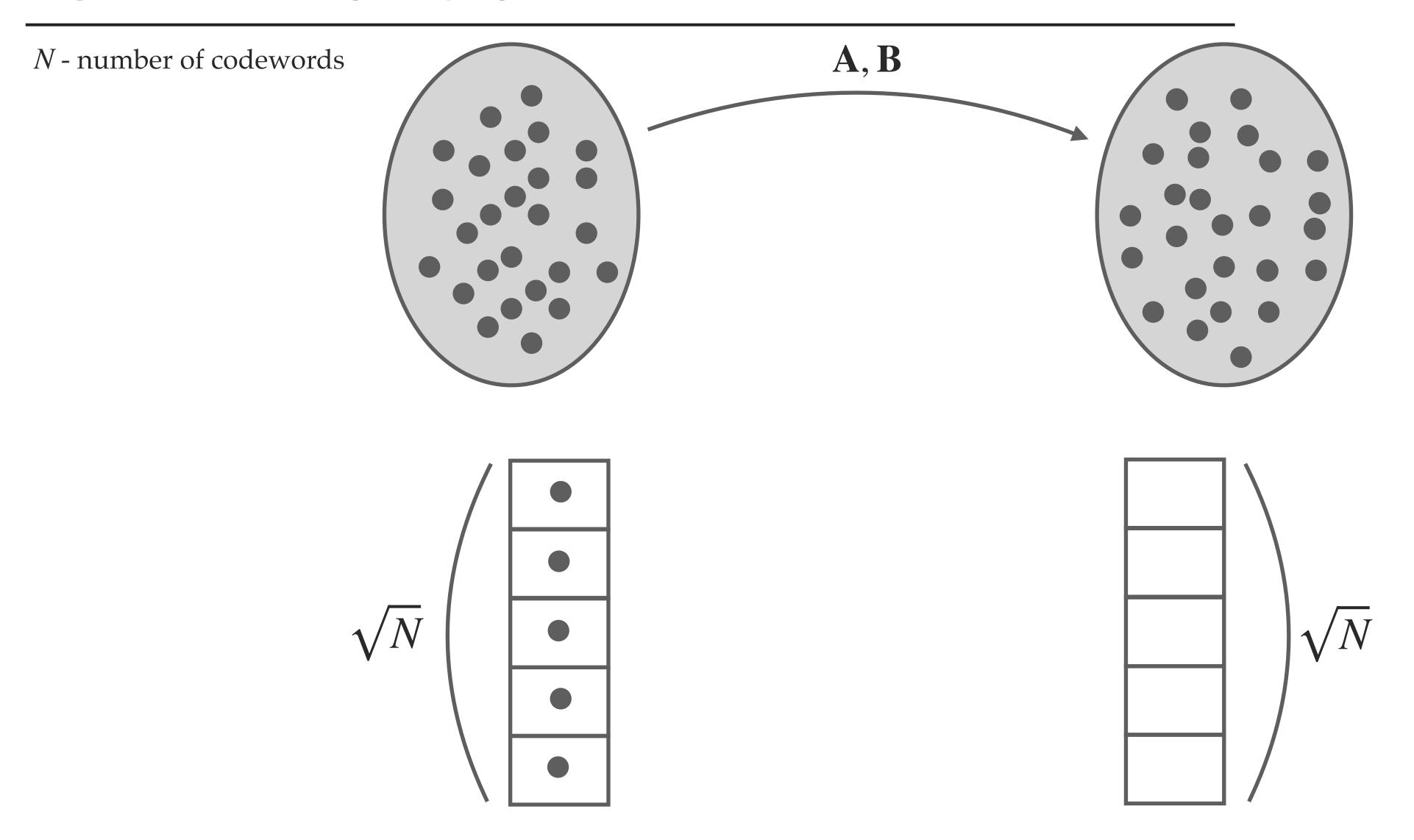
A, B

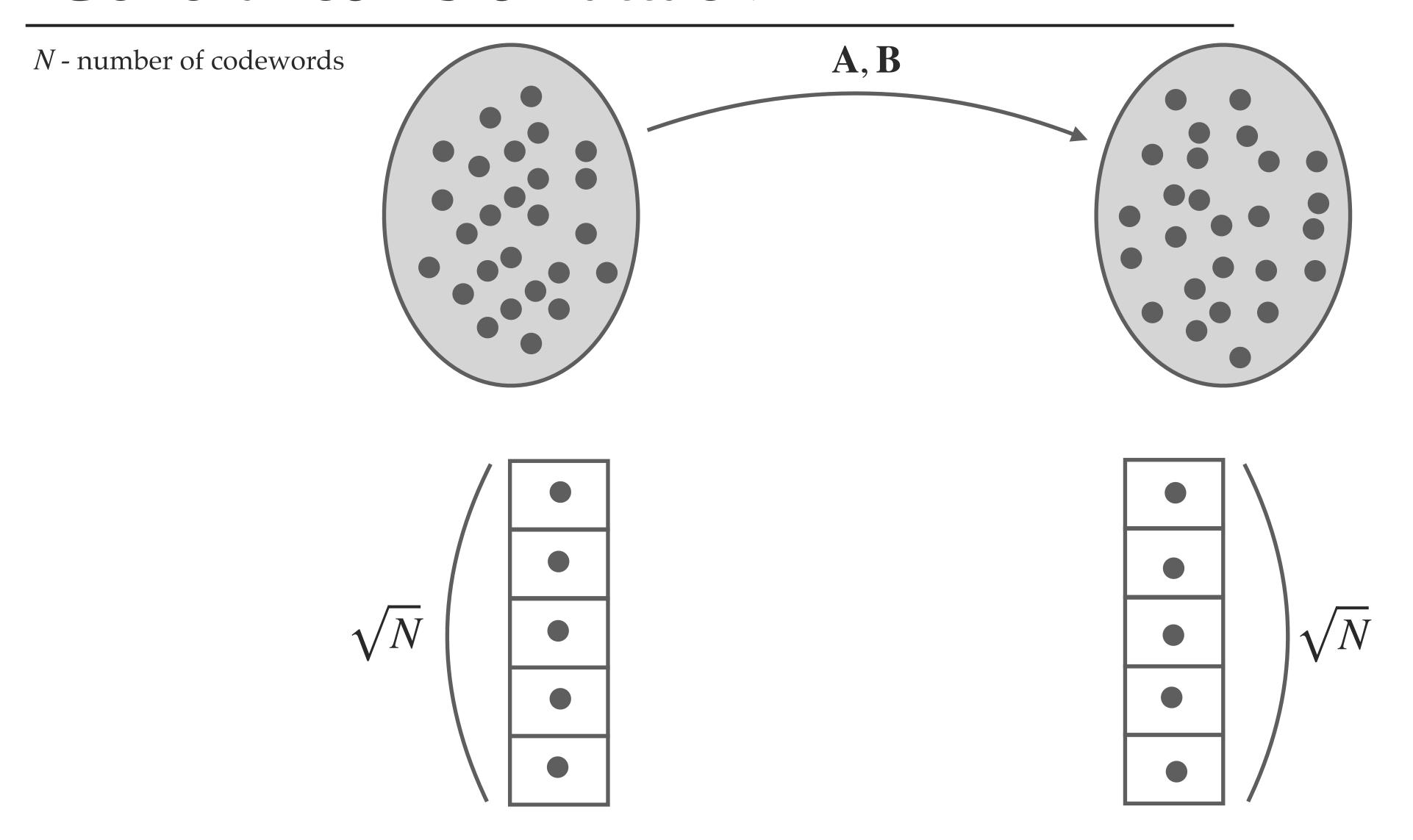
General collision attack

A, B *N* - number of codewords

General collision attack







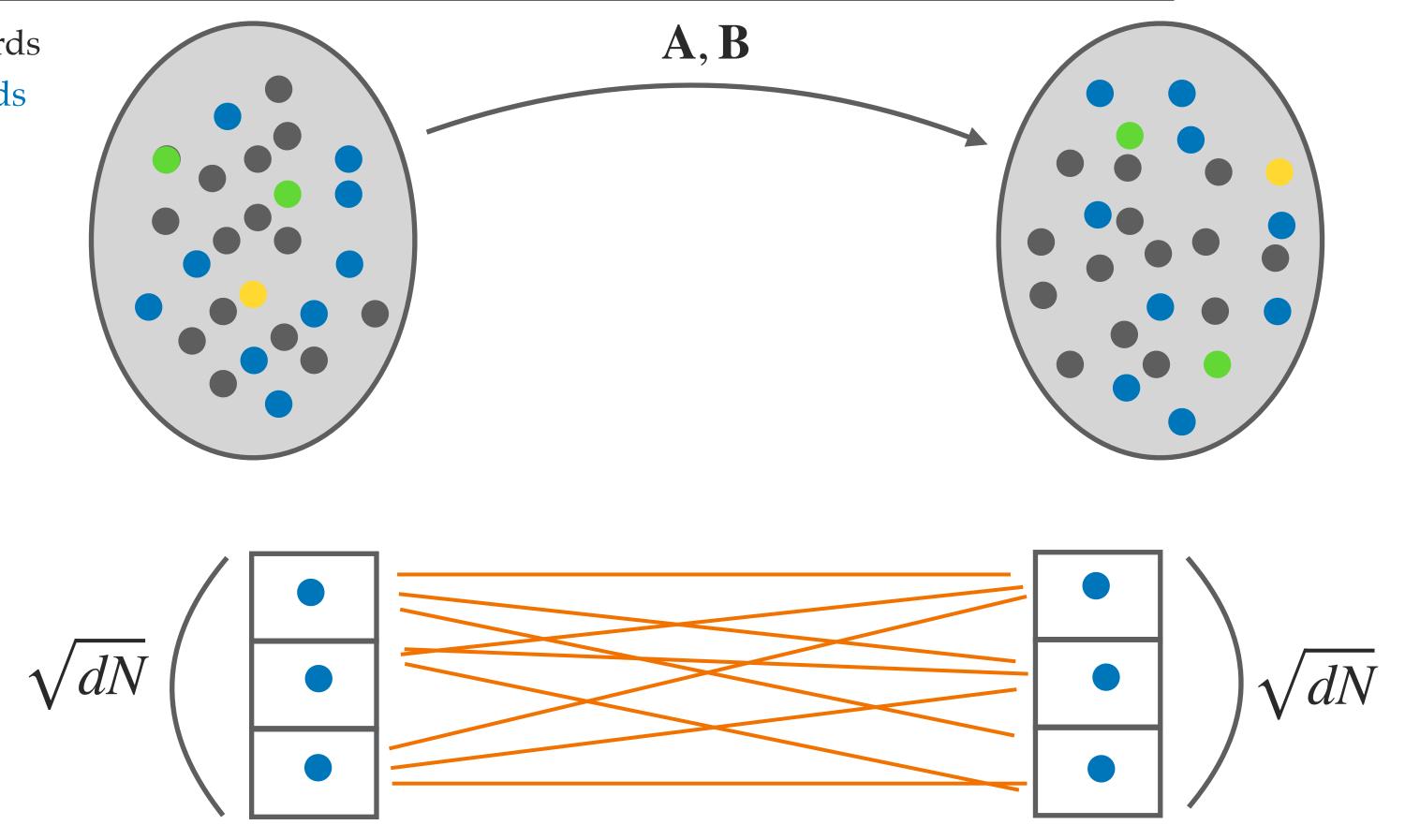
A, B *N* - number of codewords

A,B *N* - number of codewords *d* - density of codewords of rank *r*

A,B *N* - number of codewords *d* - density of codewords of rank *r*

A,B *N* - number of codewords *d* - density of codewords of rank *r*

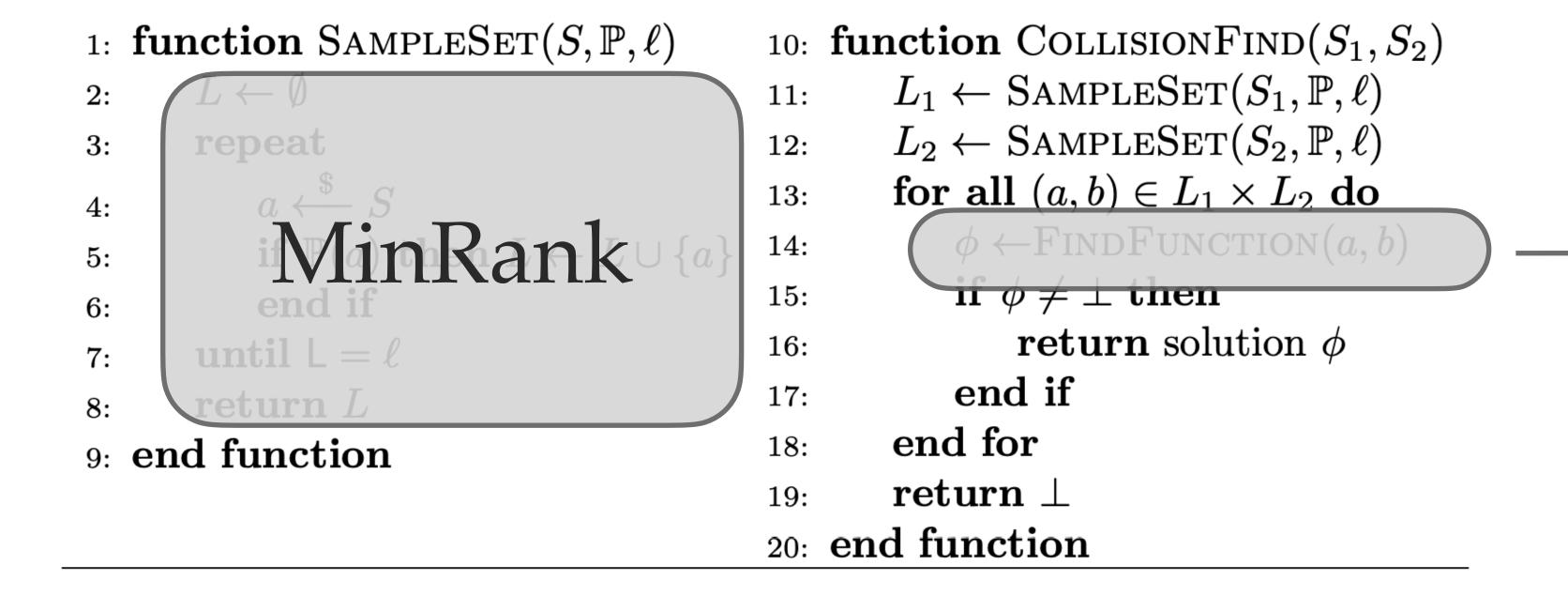
N - number of codewords*d* - density of codewordsof rank *r*

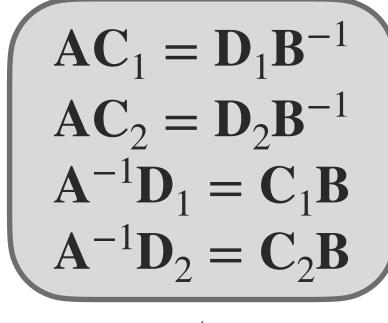



```
1: function SampleSet(S, \mathbb{P}, \ell) 10: function CollisionFind(S_1, S_2)
       L \leftarrow \emptyset
                                                        L_1 \leftarrow \text{SAMPLESET}(S_1, \mathbb{P}, \ell)
                                                  11:
2:
                                                       L_2 \leftarrow \text{SAMPLESET}(S_2, \mathbb{P}, \ell)
       repeat
3:
                                                  13: for all (a,b) \in L_1 \times L_2 do
         a \stackrel{\$}{\longleftarrow} S
                                                        \phi \leftarrow \text{FINDFUNCTION}(a, b)
      if \mathbb{P}(a) then L \leftarrow L \cup \{a\}
5:
                                                         if \phi \neq \bot then
                                                  15:
            end if
6:
                                                                     return solution \phi
                                                  16:
       until L = \ell
7:
                                                                end if
                                                  17:
       return L
8:
                                                           end for
                                                  18:
9: end function
                                                           {f return}\ oldsymbol{\perp}
                                                  19:
                                                  20: end function
```

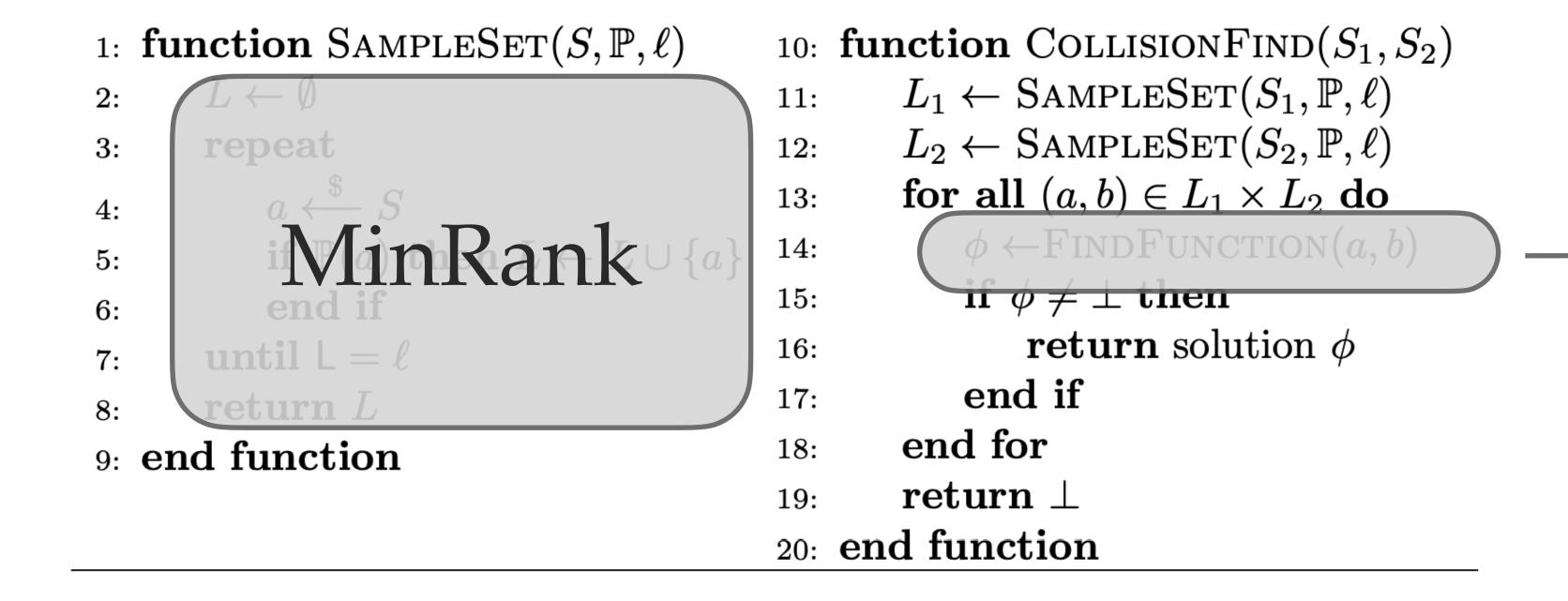


```
10: function CollisionFind(S_1, S_2)
1: function SampleSet(S, \mathbb{P}, \ell)
                                                           L_1 \leftarrow \text{SAMPLESET}(S_1, \mathbb{P}, \ell)
2:
                                                          L_2 \leftarrow \text{SAMPLESET}(S_2, \mathbb{P}, \ell)
       repeat
3:
                                                           for all (a,b) \in L_1 \times L_2 do
                                                  13:
4:
                                                        \phi \leftarrow \text{FINDFUNCTION}(a, b)
5:
                                                               if \phi \neq \bot then
6:
                                                                    return solution \phi
                                                  16:
        until L = \ell
7:
                                                                end if
                                                  17:
        return L
8:
                                                           end for
                                                  18:
   end function
                                                           {f return}\ oldsymbol{\perp}
                                                  19:
                                                  20: end function
```



Leon-like algorithm



$$\mathbf{A}\mathbf{C}_1 = \mathbf{D}_1 \mathbf{B}^{-1}$$

$$\mathbf{A}\mathbf{C}_2 = \mathbf{D}_2 \mathbf{B}^{-1}$$

$$\mathbf{A}^{-1}\mathbf{D}_1 = \mathbf{C}_1 \mathbf{B}$$

$$\mathbf{A}^{-1}\mathbf{D}_2 = \mathbf{C}_2 \mathbf{B}$$


```
1: function SampleSet(S, \mathbb{P}, \ell)
                                             10: function CollisionFind(S_1, S_2)
                                                       L_1 \leftarrow \text{SAMPLESET}(S_1, \mathbb{P}, \ell)
       L \leftarrow \emptyset
                                                 11:
2:
                                                      L_2 \leftarrow \text{SAMPLESET}(S_2, \mathbb{P}, \ell)
       repeat
3:
         a \stackrel{\$}{\longleftarrow} S
                                                 13: for all (a,b) \in L_1 \times L_2 do
                                                       \phi \leftarrow \text{FINDFUNCTION}(a, b)
       if \mathbb{P}(a) then L \leftarrow L \cup \{a\}
5:
                                                         if \phi \neq \bot then
                                                 15:
            end if
6:
                                                                   return solution \phi
                                                 16:
       until L = \ell
7:
                                                               end if
                                                 17:
       return L
8:
                                                          end for
                                                 18:
9: end function
                                                          return \perp
                                                 19:
                                                 20: end function
```


N - total number of elements in S_* (number of codewords)

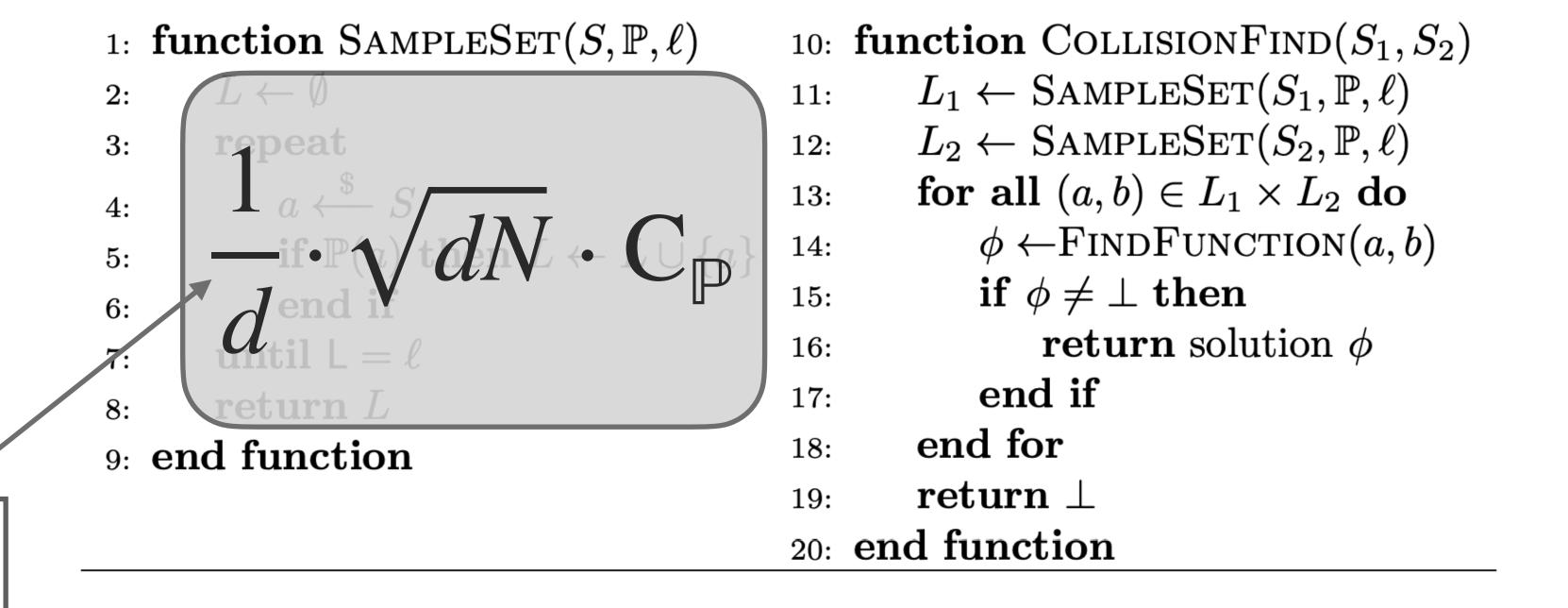
d - proportion of elements in S_* that satisfy \mathbb{P} (density of codewords of rank r)

```
1: function SampleSet(S, \mathbb{P}, \ell)
                                                   10: function CollisionFind(S_1, S_2)
                                                            L_1 \leftarrow \text{SAMPLESET}(S_1, \mathbb{P}, \ell)
                                                   11:
2:
                                                            L_2 \leftarrow \text{SAMPLESET}(S_2, \mathbb{P}, \ell)
3:
                                                            for all (a,b) \in L_1 \times L_2 do
                                                  13:
4:
                                                                \phi \leftarrow \text{FINDFUNCTION}(a, b)
                                                   14:
5:
                                                                if \phi \neq \bot then
                                                   15:
6:
                                                                     return solution \phi
                                                   16:
7:
                                                                 end if
                                                   17:
8:
                                                            end for
                                                   18:
   end function
                                                            return \perp
                                                   19:
                                                   20: end function
```


N - total number of elements in S_* (number of codewords)

d - proportion of elements in S_* that satisfy $\mathbb P$ (density of codewords of rank r)

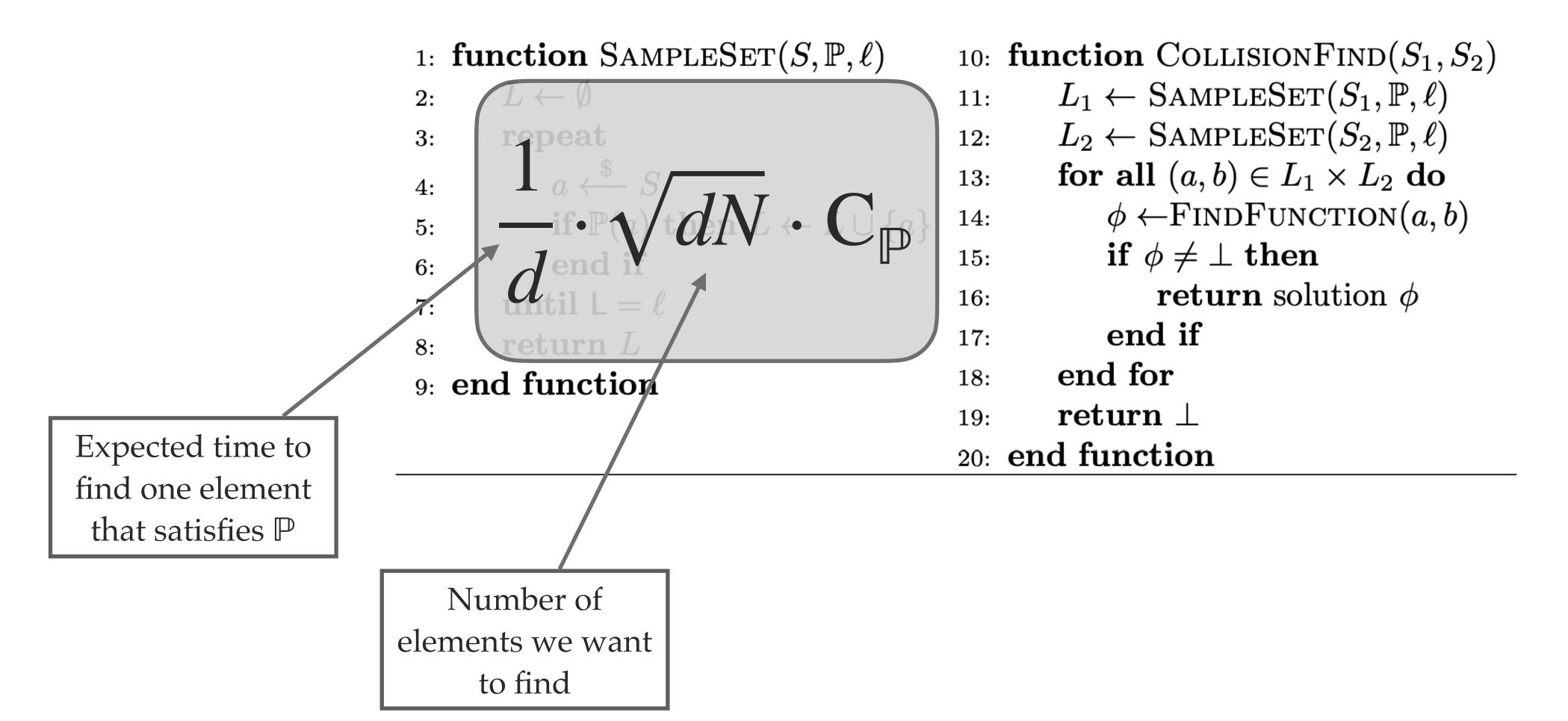
Algorithm 1 General Birthday-based Equivalence Finder



Expected time to find one element that satisfies P

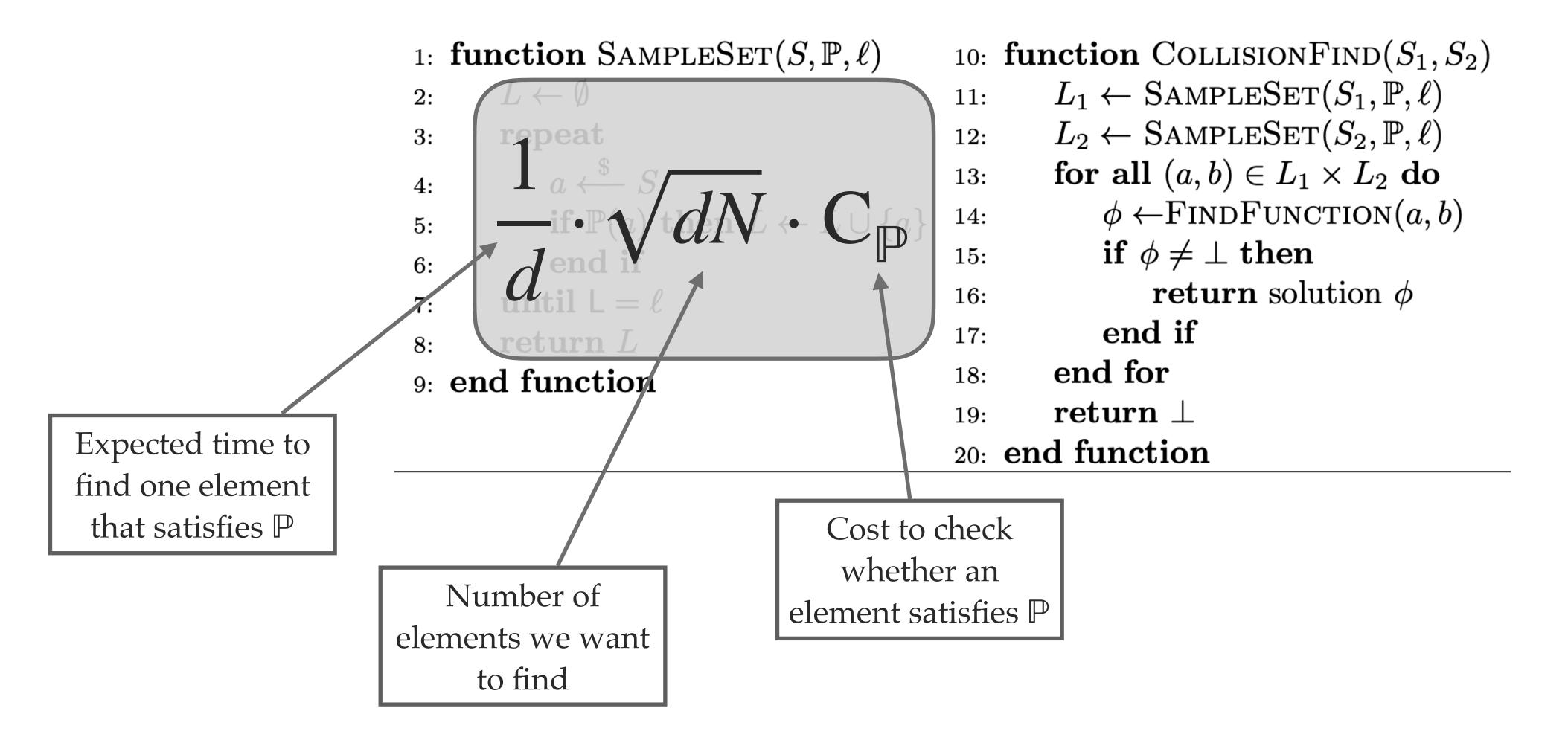
N - total number of elements in S_* (number of codewords)

d - proportion of elements in S_* that satisfy $\mathbb P$ (density of codewords of rank r)



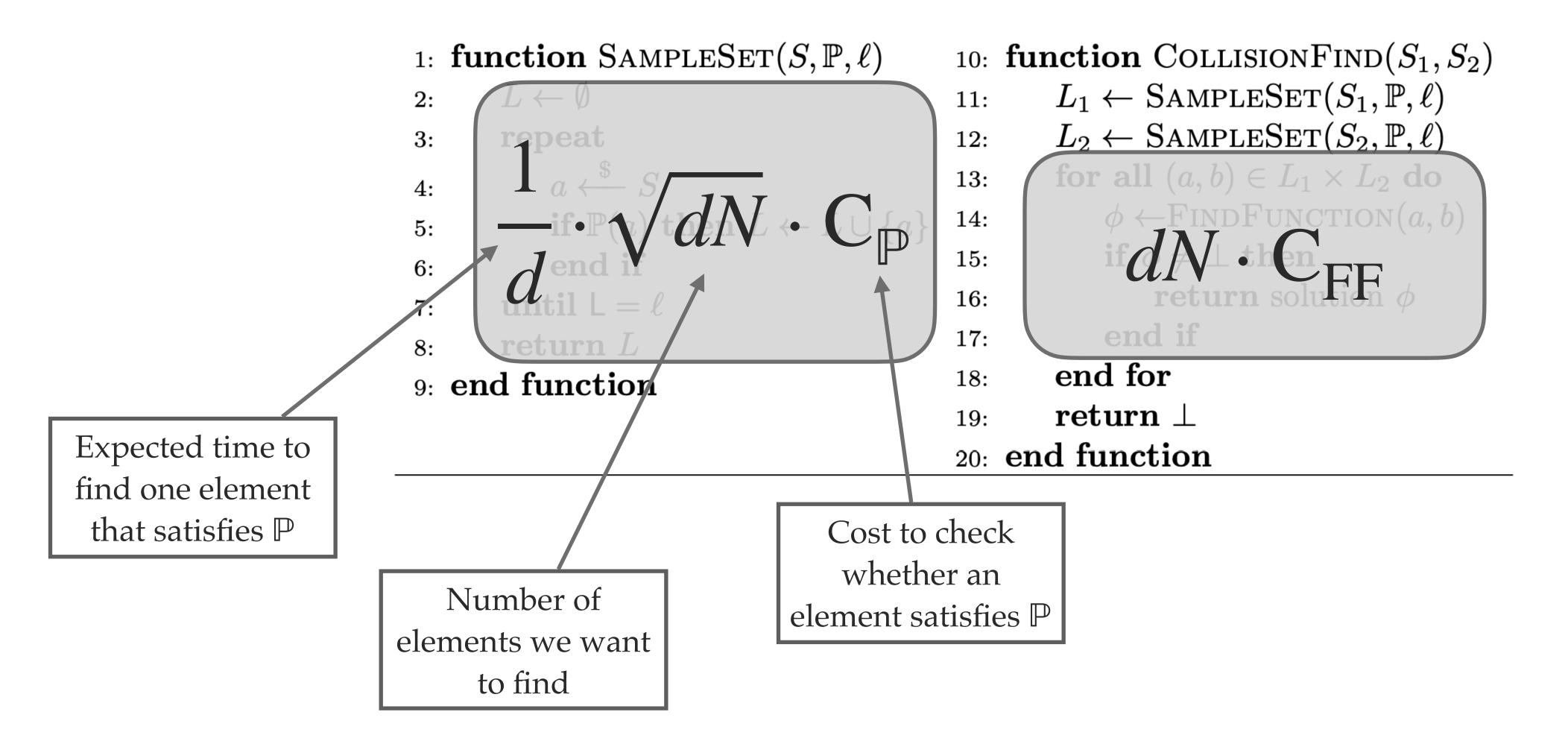
N - total number of elements in S_* (number of codewords)

d - proportion of elements in S_* that satisfy $\mathbb P$ (density of codewords of rank r)



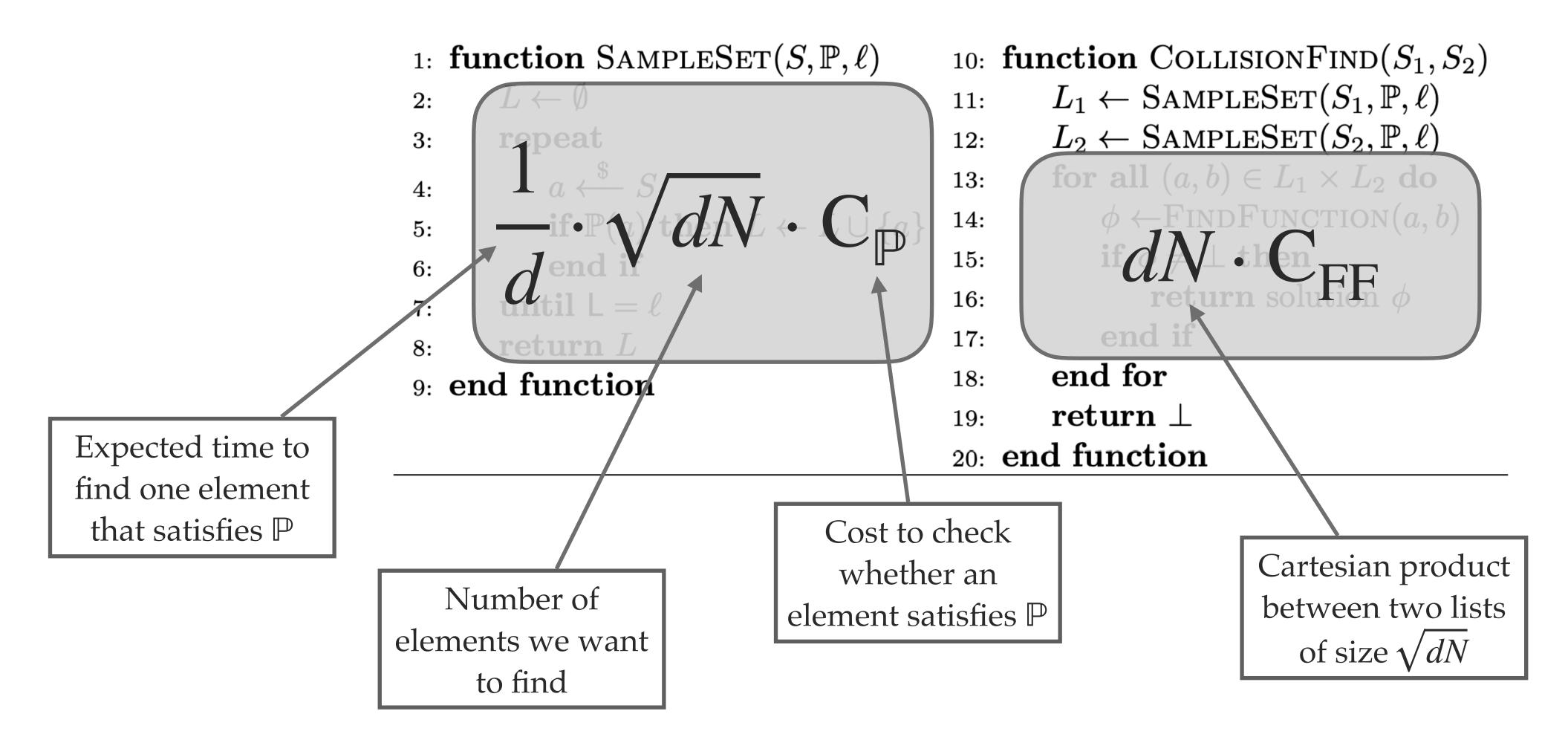
N - total number of elements in S_* (number of codewords)

d - proportion of elements in S_* that satisfy $\mathbb P$ (density of codewords of rank r)



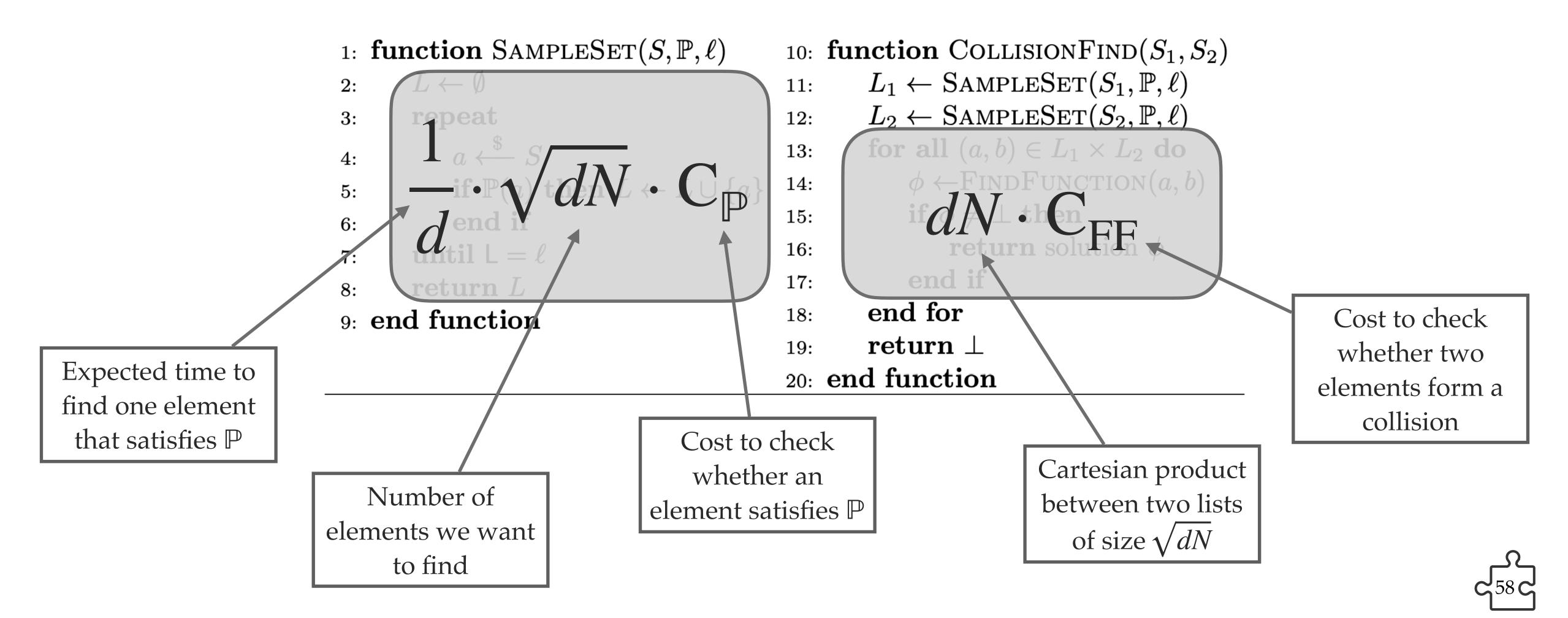
N - total number of elements in S_* (number of codewords)

d - proportion of elements in S_* that satisfy \mathbb{P} (density of codewords of rank r)



N - total number of elements in S_* (number of codewords)

d - proportion of elements in S_* that satisfy $\mathbb P$ (density of codewords of rank r)



Depends on the choice of the predicate P. The choice is made such that we obtain the optimal balance between the two parts of the algorithm, aka. they take approximately the same time (whenever possible).

$$\frac{1}{d}\sqrt{dN}\,\mathbf{C}_{\mathbb{P}} \approx dN\,\mathbf{C}_{\mathrm{FF}}$$

Depends on the choice of the predicate P. The choice is made such that we obtain the optimal balance between the two parts of the algorithm, aka. they take approximately the same time (whenever possible).

$$\frac{1}{d}\sqrt{dN}\,\mathbf{C}_{\mathbb{P}} \approx dN\,\mathbf{C}_{\mathrm{FF}}$$

Best trade-off: when $d \approx N^{-\frac{1}{3}}$ (assuming $C_{\mathbb{P}}$ and C_{FF} are poly-time and comparable).

Depends on the choice of the predicate P. The choice is made such that we obtain the optimal balance between the two parts of the algorithm, aka. they take approximately the same time (whenever possible).

$$\frac{1}{d}\sqrt{dN}\,\mathbf{C}_{\mathbb{P}} \approx dN\,\mathbf{C}_{\mathrm{FF}}$$

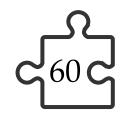
Best trade-off: when $d \approx N^{-\frac{1}{3}}$ (assuming $C_{\mathbb{P}}$ and C_{FF} are poly-time and comparable).

Time complexity
$$\mathcal{O}(N^{\frac{2}{3}})$$

Time complexity
$$O(N^{\frac{2}{3}})$$
Memory complexity $O(N^{\frac{1}{3}})$

Why not $\sqrt{ }$?

A, B *N* - number of codewords



Distinguishing isomorphism invariants

A distinguishing invariant for QMLE (a variant of the isomorphism of polynomials problem) over \mathbb{F}_2 .

[BFV] Bouillaguet, Fouque, Véber. Graph-Theoretic Algorithms for the Isomorphism of Polynomials Problem. (2012)

A distinguishing invariant for ATFE with parameter n = 9.

[Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)

A distinguishing invariant for MCE and ATFE.

[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)

A distinguishing invariant for MCE and ATFE.

Signatures from equivalence problems

Equivalence-based digital signature schemes in the NIST competition (and elsewhere):

LESS: Linear code equivalence

Matrix code equivalence

Alternating trilinear form equivalence

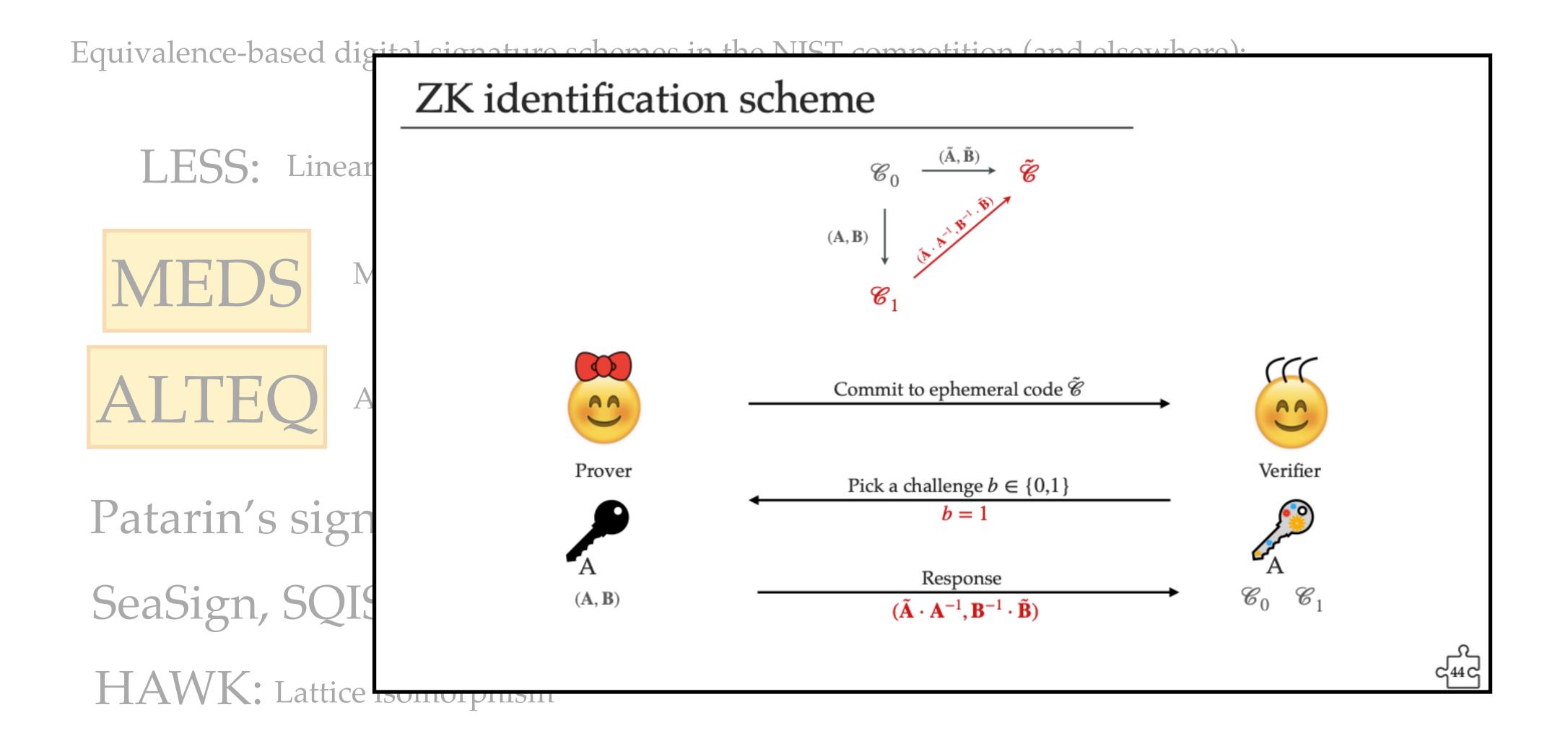
Patarin's signature scheme: Isomorphism of polynomials

SeaSign, SQISign: Isogeny between elliptic curves

HAWK: Lattice isomorphism

• • •

Signatures from equivalence problems



• • •

Signatures from equivalence problems

Equivalence-based digital signature schemes in the NIST competition (and elsewhere):

LESS: Linear code equivalence

Matrix code equivalence

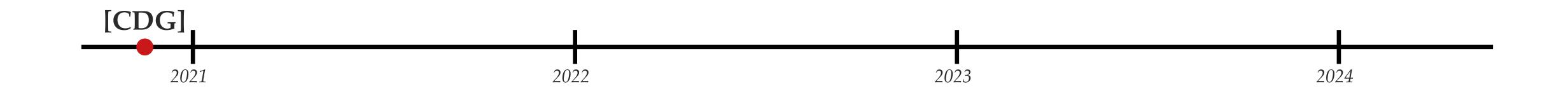
Alternating trilinear form equivalence

Patarin's signature scheme: Isomorphism of polynomials

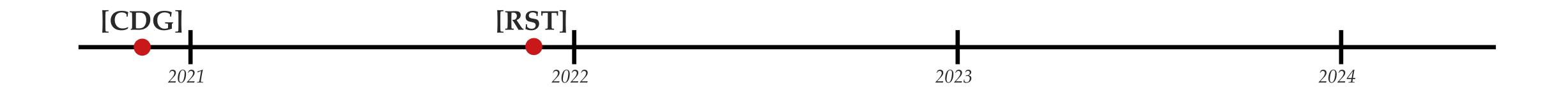
SeaSign, SQISign: Isogeny between elliptic curves

HAWK: Lattice isomorphism

• • •



[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)



[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)

[RST] Reijnders, Samardjiska, Trimoska. Hardness estimates of the Code Equivalence Problem in the Rank Metric. (2021)

[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)

[RST] Reijnders, Samardjiska, Trimoska. Hardness estimates of the Code Equivalence Problem in the Rank Metric. (2021)

[CNPRRST] Chou, Niederhagen, Persichetti, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Take your MEDS: Digital Signatures from Matrix Code Equivalence. (2022)

[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)

[RST] Reijnders, Samardjiska, Trimoska. Hardness estimates of the Code Equivalence Problem in the Rank Metric. (2021)

[CNPRRST] Chou, Niederhagen, Persichetti, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Take your MEDS: Digital Signatures from Matrix Code Equivalence. (2022) [CNPRRST] Chou, Niederhagen, Persichetti, Ran, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Matrix Equivalence Digital Signature Scheme. (2023)

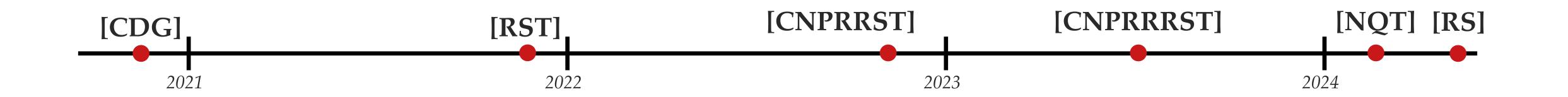
[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)

[RST] Reijnders, Samardjiska, Trimoska. Hardness estimates of the Code Equivalence Problem in the Rank Metric. (2021)

[CNPRRST] Chou, Niederhagen, Persichetti, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Take your MEDS: Digital Signatures from Matrix Code Equivalence. (2022)

[CNPRRRST] Chou, Niederhagen, Persichetti, Ran, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Matrix Equivalence Digital Signature Scheme. (2023)

[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)



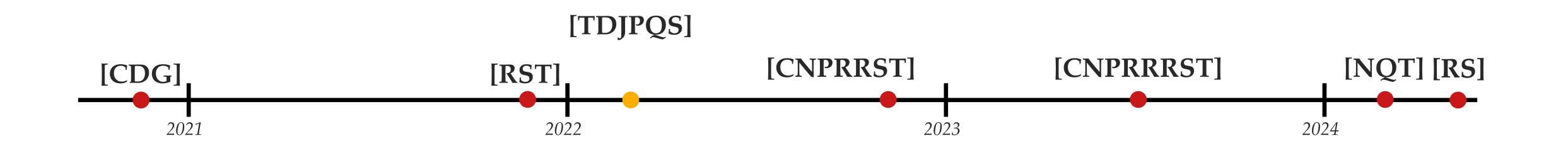
[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)

[RST] Reijnders, Samardjiska, Trimoska. Hardness estimates of the Code Equivalence Problem in the Rank Metric. (2021)

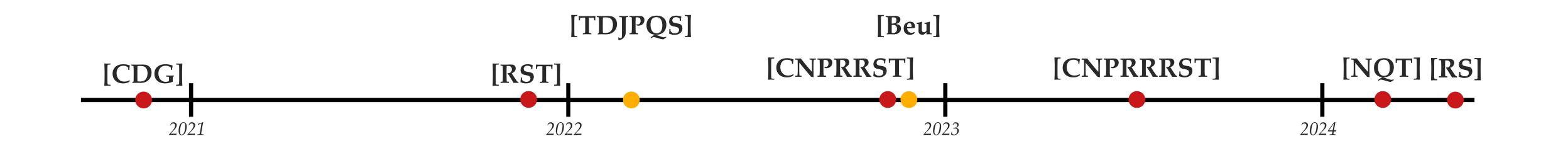
[CNPRRST] Chou, Niederhagen, Persichetti, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Take your MEDS: Digital Signatures from Matrix Code Equivalence. (2022)

[CNPRRRST] Chou, Niederhagen, Persichetti, Ran, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Matrix Equivalence Digital Signature Scheme. (2023)

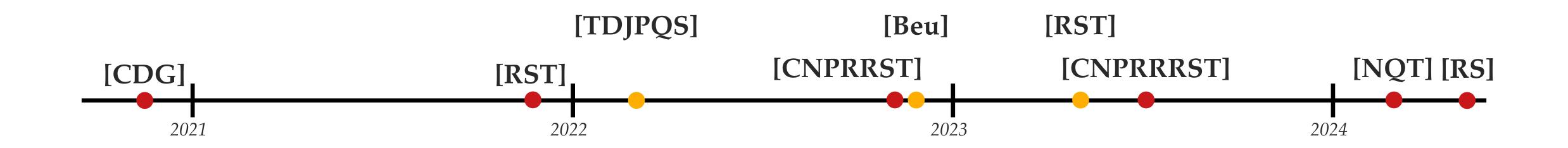
[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)



[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022)



[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022) [Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)



[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022) [Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)

[RST] Ran, Samardjiska, Trimoska. Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem. (2023)

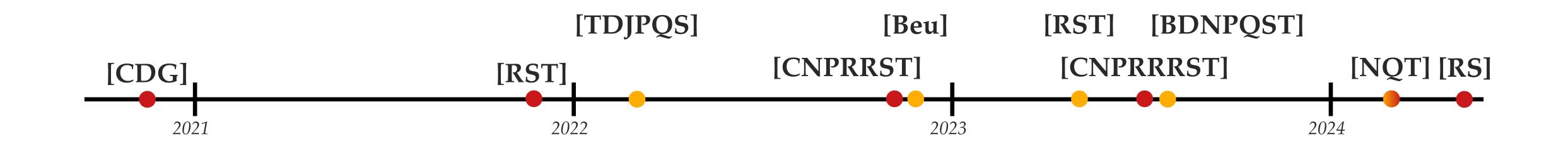


[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022)

[Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)

[RST] Ran, Samardjiska, Trimoska. Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem. (2023)

[BDNPQST]. Bläser, Duong, Narayanan, Plantard, Qiao, Sipasseuth, Tang. The ALTEQ Signature Scheme. (2023)



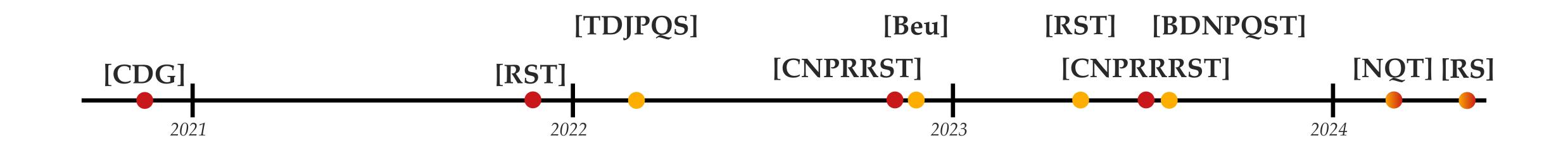
[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022)

[Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)

[RST] Ran, Samardjiska, Trimoska. Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem. (2023)

[BDNPQST]. Bläser, Duong, Narayanan, Plantard, Qiao, Sipasseuth, Tang. The ALTEQ Signature Scheme. (2023)

[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)



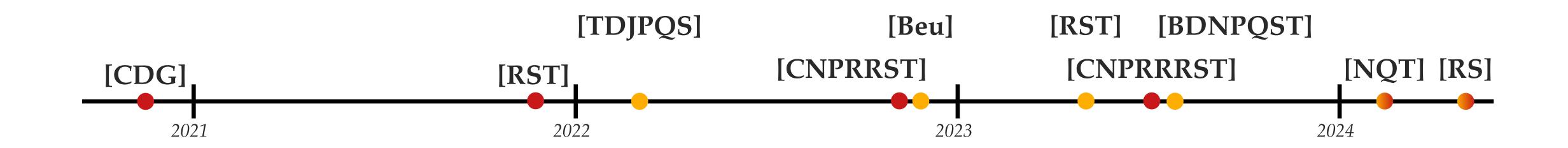
[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022)

[Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)

[RST] Ran, Samardjiska, Trimoska. Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem. (2023)

[BDNPQST]. Bläser, Duong, Narayanan, Plantard, Qiao, Sipasseuth, Tang. The ALTEQ Signature Scheme. (2023)

[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)



[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)

[RST] Reijnders, Samardjiska, Trimoska. Hardness estimates of the Code Equivalence Problem in the Rank Metric. (2021)

[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022)

[CNPRRST] Chou, Niederhagen, Persichetti, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Take your MEDS: Digital Signatures from Matrix Code Equivalence. (2022)

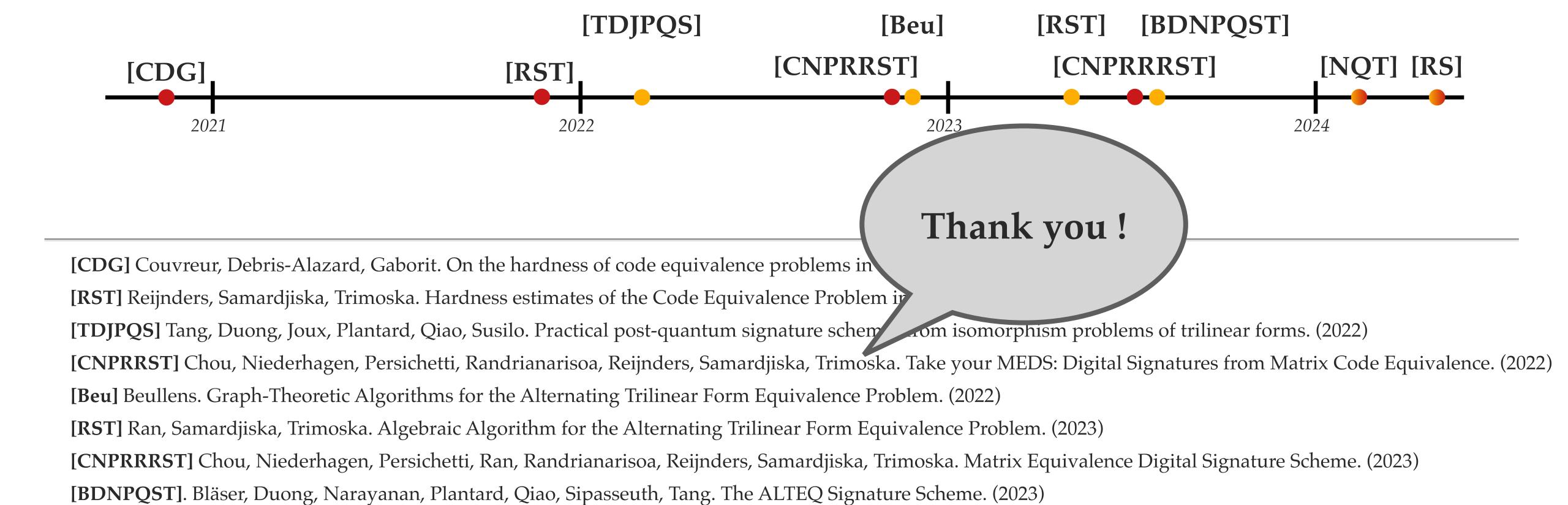
[Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)

[RST] Ran, Samardjiska, Trimoska. Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem. (2023)

[CNPRRRST] Chou, Niederhagen, Persichetti, Ran, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Matrix Equivalence Digital Signature Scheme. (2023)

[BDNPQST]. Bläser, Duong, Narayanan, Plantard, Qiao, Sipasseuth, Tang. The ALTEQ Signature Scheme. (2023)

[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)



[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)