
Algebraic and Combinatorial Algorithms for
the Matrix Code Equivalence Problem

Rank-Metric Codes and Network Coding, SIAM-AG 2025
July 11, Madison, Wisconsin

Monika Trimoska

including multiple joint works with the MEDS team

*Animated version at: https://mtrimoska.com/slides/SIAM25/index.html

https://mtrimoska.com/slides/SIAM25/index.html

2

The MEDS team

Matrix code equivalence problem 
(MCE)

4

Matrix (rank-metric) codes

Matrix code
A matrix code over is a -dimensional -linear subspace of .𝒞 𝔽q k 𝔽q 𝔽m×n

q

4

Matrix (rank-metric) codes

Matrix code
A matrix code over is a -dimensional -linear subspace of .𝒞 𝔽q k 𝔽q 𝔽m×n

q

Basis of a matrix code
The basis of a matrix code is given by the -tuple .𝒞 k (C(1), …, C(k))

4

Matrix (rank-metric) codes

Matrix code
A matrix code over is a -dimensional -linear subspace of .𝒞 𝔽q k 𝔽q 𝔽m×n

q

Rank metric
For , the rank weight of is given by the rank of , aka. C ∈ 𝔽m×n

q C C

.wt(C) = rk(C)

Basis of a matrix code
The basis of a matrix code is given by the -tuple .𝒞 k (C(1), …, C(k))

5

Matrix (rank-metric) codes

Example. q = 13, m = 4, n = 6, k = 5

C = λ1 ⋅

2 8 10 4 5 7
1 11 7 9 6 12
3 0 13 5 4 8
9 6 3 2 10 11

+ λ2 ⋅

12 0 4 11 9 3
5 6 8 13 2 1

10 7 3 9 4 6
2 5 11 8 1 10

+ λ3 ⋅

5 2 9 11 4 8
3 7 1 10 12 0
6 9 2 13 11 8
1 5 6 3 10 7

+ λ4 ⋅

9 4 6 1 13 2
8 0 5 12 6 11
3 7 10 9 4 5
2 8 11 3 7 1

+ λ5 ⋅

7 10 4 6 8 3
1 5 2 11 9 0
13 7 6 4 12 2
8 3 1 9 5 10

λi ∈ 𝔽q

6

Matrix code equivalence

Isometry
An isometry (for our purposes) between two codes and is a linear map that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

6

Matrix code equivalence

Isometry
An isometry (for our purposes) between two codes and is a linear map that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In this case: an isometry preserves the rank weight of codewords.

6

Matrix code equivalence

Isometry
An isometry (for our purposes) between two codes and is a linear map that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In this case: an isometry preserves the rank weight of codewords.

Which linear transformations preserve the rank?

6

Matrix code equivalence

Isometry
An isometry (for our purposes) between two codes and is a linear map that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In this case: an isometry preserves the rank weight of codewords.

Which linear transformations preserve the rank?

Multiply a codeword on the right by any M ∈ 𝔽n×r
q

6

Matrix code equivalence

Isometry
An isometry (for our purposes) between two codes and is a linear map that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In this case: an isometry preserves the rank weight of codewords.

Which linear transformations preserve the rank?

Multiply a codeword on the right by any M ∈ 𝔽n×r
q ✘

6

Matrix code equivalence

Isometry
An isometry (for our purposes) between two codes and is a linear map that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In this case: an isometry preserves the rank weight of codewords.

Which linear transformations preserve the rank?

Multiply a codeword on the right by any M ∈ 𝔽n×r
q

Multiply a codeword on the right by B ∈ GLn

✘

6

Matrix code equivalence

Isometry
An isometry (for our purposes) between two codes and is a linear map that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In this case: an isometry preserves the rank weight of codewords.

Which linear transformations preserve the rank?

Multiply a codeword on the right by any M ∈ 𝔽n×r
q

Multiply a codeword on the right by B ∈ GLn

✘
✓

6

Matrix code equivalence

Isometry
An isometry (for our purposes) between two codes and is a linear map that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In this case: an isometry preserves the rank weight of codewords.

Which linear transformations preserve the rank?

Multiply a codeword on the right by any M ∈ 𝔽n×r
q

Multiply a codeword on the right by B ∈ GLn

Multiply a codeword on the left by A ∈ GLm

✘
✓

6

Matrix code equivalence

Isometry
An isometry (for our purposes) between two codes and is a linear map that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In this case: an isometry preserves the rank weight of codewords.

Which linear transformations preserve the rank?

Multiply a codeword on the right by any M ∈ 𝔽n×r
q

Multiply a codeword on the right by B ∈ GLn

Multiply a codeword on the left by A ∈ GLm

✘
✓
✓

6

Matrix code equivalence

Isometry
An isometry (for our purposes) between two codes and is a linear map that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In this case: an isometry preserves the rank weight of codewords.

Which linear transformations preserve the rank?

Multiply a codeword on the right by any M ∈ 𝔽n×r
q

Multiply a codeword on the right by B ∈ GLn

Multiply a codeword on the left by A ∈ GLm

✘
✓
✓

Take the transposition of a codeword (only when , does not make the equivalence problem harder)m = n ✓

7

Matrix code equivalence

Input: Two -dimensional matrix codes for two matrix codes and . 
Question: Find - if any - a map , where and such that for
all , it holds that .

k 𝒞, 𝒟 ⊂ 𝔽m×n
q 𝒞 𝒟

(A, B) A ∈ GLm(𝔽q) B ∈ GLn(𝔽q)
C ∈ 𝒞 ACB ∈ 𝒟

The Matrix Code Equivalence (MCE) problem

8

Matrix code equivalence

The MCE problem in matrix form

Let be a basis of code and let be a basis of code . Find ,
 and such that

(C(1), …, C(k)) 𝒞 (D(1), …, D(k)) 𝒟 A ∈ GLm(𝔽q)
B ∈ GLn(𝔽q) T ∈ GLk(𝔽q)

D(i) = ∑
1≤ j≤k

tj,iAC(j)B, ∀1 ≤ i ≤ k

8

Matrix code equivalence

The MCE problem in matrix form

Let be a basis of code and let be a basis of code . Find ,
 and such that

(C(1), …, C(k)) 𝒞 (D(1), …, D(k)) 𝒟 A ∈ GLm(𝔽q)
B ∈ GLn(𝔽q) T ∈ GLk(𝔽q)

D(i) = ∑
1≤ j≤k

tj,iAC(j)B, ∀1 ≤ i ≤ k

change of basis

9

From matrix codes to 3-tensors

We can think of a matrix code as a 3-tensor over .𝔽q

10

From matrix codes to 3-tensors

We can think of a matrix code as a 3-tensor over .𝔽q

11

From matrix codes to 3-tensors

Viewed as a 3-tensor, we can see from three directions𝒞
• a -dimensional code in

• an -dimensional code in

• an -dimensional code in

k 𝔽m×n
q

m 𝔽n×k
q

n 𝔽m×k
q

12

From matrix codes to 3-tensors

Viewed as a 3-tensor, we can see from three directions𝒞
• a -dimensional code in

• an -dimensional code in

• an -dimensional code in

k 𝔽m×n
q

m 𝔽n×k
q

n 𝔽m×k
q

13

From matrix codes to 3-tensors

Viewed as a 3-tensor, we can see from three directions𝒞
• a -dimensional code in

• an -dimensional code in

• an -dimensional code in

k 𝔽m×n
q

m 𝔽n×k
q

n 𝔽m×k
q

14

Tensor isomorphism

The equivalence then becomes tensor isomorphism.

15

Tensor isomorphism

The equivalence then becomes tensor isomorphism.

16

Tensor isomorphism

The equivalence then becomes tensor isomorphism.

17

Tensor isomorphism

The equivalence then becomes tensor isomorphism.

18

Tensor isomorphism

The equivalence then becomes tensor isomorphism.

19

Tensor isomorphism

The equivalence then becomes tensor isomorphism.

20

Tensor isomorphism

The equivalence then becomes tensor isomorphism.

21

Tensor isomorphism

The equivalence then becomes tensor isomorphism.

Alternating trilinear form
equivalence problem 

(ATFE)

23

Multilinear forms

-linear formk
A -linear form is a function that is linear in each argument. k ϕ : 𝔽n

q × … × 𝔽n
q → 𝔽q

if we fix arguments, it is linear in the remaining argument.k − 1

23

Multilinear forms

-linear formk
A -linear form is a function that is linear in each argument. k ϕ : 𝔽n

q × … × 𝔽n
q → 𝔽q

if we fix arguments, it is linear in the remaining argument.k − 1

Alternating property
 is alternating : whenever for some .ϕ ϕ(x1, …, xk) = 0 xi = xj i ≠ j

23

Multilinear forms

-linear formk
A -linear form is a function that is linear in each argument. k ϕ : 𝔽n

q × … × 𝔽n
q → 𝔽q

if we fix arguments, it is linear in the remaining argument.k − 1

Alternating property
 is alternating : whenever for some .ϕ ϕ(x1, …, xk) = 0 xi = xj i ≠ j

We focus on trilinear forms: .ϕ(x, y, z)

24

Array representation
Bilinear form:

25

Array representation
Trilinear form:

26

Array representation
Trilinear form:

27

Array representation
Trilinear form:

28

Array representation
Trilinear form:

29

Alternating trilinear form
The alternating property

 whenever or or .ϕ(x, y, z) = 0 x = y x = z y = z

29

Alternating trilinear form
The alternating property

 whenever or or .ϕ(x, y, z) = 0 x = y x = z y = z

Compact representation
 , where denotes the wedge product.∑

1⩽i<j<s⩽n

γijs(e*i ∧ e*j ∧ e*s) ∧

29

Alternating trilinear form
The alternating property

 whenever or or .ϕ(x, y, z) = 0 x = y x = z y = z

Compact representation
 , where denotes the wedge product.∑

1⩽i<j<s⩽n

γijs(e*i ∧ e*j ∧ e*s) ∧

 sends to e*i ∧ e*j ∧ e*s (x, y, z)
xi yi zi
xj yj zj
xs ys zs

29

Alternating trilinear form
The alternating property

 whenever or or .ϕ(x, y, z) = 0 x = y x = z y = z

Compact representation
 , where denotes the wedge product.∑

1⩽i<j<s⩽n

γijs(e*i ∧ e*j ∧ e*s) ∧

 sends to e*i ∧ e*j ∧ e*s (x, y, z)
xi yi zi
xj yj zj
xs ys zs

 = xiyjzs−xiyszj+xsyizj−xjyizs+xjyszi−xsyjzi

 = xiyjzs−xiyszj+xsyizj−xjyizs+xjyszi−xsyjzi

29

Alternating trilinear form
The alternating property

 whenever or or .ϕ(x, y, z) = 0 x = y x = z y = z

Compact representation
 , where denotes the wedge product.∑

1⩽i<j<s⩽n

γijs(e*i ∧ e*j ∧ e*s) ∧

 sends to e*i ∧ e*j ∧ e*s (x, y, z)
xi yi zi
xj yj zj
xs ys zs

* when x = y

 = xiyjzs−xiyszj+xsyizj−xjyizs+xjyszi−xsyjzi

29

Alternating trilinear form
The alternating property

 whenever or or .ϕ(x, y, z) = 0 x = y x = z y = z

Compact representation
 , where denotes the wedge product.∑

1⩽i<j<s⩽n

γijs(e*i ∧ e*j ∧ e*s) ∧

 sends to e*i ∧ e*j ∧ e*s (x, y, z)
xi yi zi
xj yj zj
xs ys zs

* when y = z

 = xiyjzs−xiyszj+xsyizj−xjyizs+xjyszi−xsyjzi

29

Alternating trilinear form
The alternating property

 whenever or or .ϕ(x, y, z) = 0 x = y x = z y = z

Compact representation
 , where denotes the wedge product.∑

1⩽i<j<s⩽n

γijs(e*i ∧ e*j ∧ e*s) ∧

 sends to e*i ∧ e*j ∧ e*s (x, y, z)
xi yi zi
xj yj zj
xs ys zs

* when x = z

29

Alternating trilinear form
The alternating property

 whenever or or .ϕ(x, y, z) = 0 x = y x = z y = z

Compact representation
 , where denotes the wedge product.∑

1⩽i<j<s⩽n

γijs(e*i ∧ e*j ∧ e*s) ∧

 sends to e*i ∧ e*j ∧ e*s (x, y, z)
xi yi zi
xj yj zj
xs ys zs

 = xiyjzs−xiyszj+xsyizj−xjyizs+xjyszi−xsyjzi

29

Alternating trilinear form
The alternating property

 whenever or or .ϕ(x, y, z) = 0 x = y x = z y = z

Compact representation
 , where denotes the wedge product.∑

1⩽i<j<s⩽n

γijs(e*i ∧ e*j ∧ e*s) ∧

 sends to e*i ∧ e*j ∧ e*s (x, y, z)
xi yi zi
xj yj zj
xs ys zs

 = xiyjzs−xiyszj+xsyizj−xjyizs+xjyszi−xsyjzi

Stored using entries, instead of .(n
3) n3

30

Alternating trilinear form equivalence

Input: Two alternating trilinear forms . 
Question: Find - if any - such that .

ϕ, ψ
A ∈ GLn(𝔽q) ϕ(x, y, z) = ψ(Ax, Ay, Az)

The Alternating Trilinear Form Equivalence (ATFE) problem

31

(Alternating) trilinear form matrix code⟶

32

(Alternating) trilinear form matrix code⟶

33

(Alternating) trilinear form matrix code⟶

34

(Alternating) trilinear form matrix code⟶

35

(Alternating) trilinear form matrix code⟶

36

(Alternating) trilinear form matrix code⟶

37

(Alternating) trilinear form matrix code⟶

38

(Alternating) trilinear form matrix code⟶

39

(Alternating) trilinear form matrix code⟶

40

ATFE MCE⟶
Let be a positive ATFE instance.(n, ϕ, ψ)

40

ATFE MCE⟶
Let be a positive ATFE instance.(n, ϕ, ψ)

ψ(i)(x, y) =

= ψ(x, y, ei) =

= ϕ(Ax, Ay, Aei) =

= ϕ(Ax, Ay, a1ie1 + … + anien) =

= ∑
1⩽j⩽n

ajiϕ(Ax, Ay, ej) =

= ∑
1⩽j⩽n

ajiϕ(j)(Ax, Ay)

40

ATFE MCE⟶
Let be a positive ATFE instance.(n, ϕ, ψ)

ψ(i)(x, y) =

= ψ(x, y, ei) =

= ϕ(Ax, Ay, Aei) =

= ϕ(Ax, Ay, a1ie1 + … + anien) =

= ∑
1⩽j⩽n

ajiϕ(Ax, Ay, ej) =

= ∑
1⩽j⩽n

ajiϕ(j)(Ax, Ay)

40

ATFE MCE⟶
Let be a positive ATFE instance.(n, ϕ, ψ)

ψ(i)(x, y) =

= ψ(x, y, ei) =

= ϕ(Ax, Ay, Aei) =

= ϕ(Ax, Ay, a1ie1 + … + anien) =

= ∑
1⩽j⩽n

ajiϕ(Ax, Ay, ej) =

= ∑
1⩽j⩽n

ajiϕ(j)(Ax, Ay)

Rewrite in matrix form:

x⊤D(i)y = ∑
1⩽j⩽n

aji(Ax)⊤C(j)(Ay), ∀i,1 ⩽ i ⩽ n

40

ATFE MCE⟶
Let be a positive ATFE instance.(n, ϕ, ψ)

ψ(i)(x, y) =

= ψ(x, y, ei) =

= ϕ(Ax, Ay, Aei) =

= ϕ(Ax, Ay, a1ie1 + … + anien) =

= ∑
1⩽j⩽n

ajiϕ(Ax, Ay, ej) =

= ∑
1⩽j⩽n

ajiϕ(j)(Ax, Ay)

Rewrite in matrix form:

D(i) = ∑
1⩽j⩽n

ajiA⊤C(j)A, ∀i,1 ⩽ i ⩽ n

40

ATFE MCE⟶
Let be a positive ATFE instance.(n, ϕ, ψ)

ψ(i)(x, y) =

= ψ(x, y, ei) =

= ϕ(Ax, Ay, Aei) =

= ϕ(Ax, Ay, a1ie1 + … + anien) =

= ∑
1⩽j⩽n

ajiϕ(Ax, Ay, ej) =

= ∑
1⩽j⩽n

ajiϕ(j)(Ax, Ay)

Rewrite in matrix form:

D(i) = ∑
1⩽j⩽n

ajiA⊤C(j)A, ∀i,1 ⩽ i ⩽ n

 is a solution to the MCE instance .(A⊤, A) (n, n, n, 𝒞, 𝒟)

Cryptanalysis

42

Cryptanalysis

42

Cryptanalysis

Take

Algebraic attacks
Attacks reducing MCE/ATFE to the

problem of solving a system of polynomial
equations.

42

Cryptanalysis

Take

Algebraic attacks
Attacks reducing MCE/ATFE to the

problem of solving a system of polynomial
equations.

Direct
modelling

Minors
modelling

Improved
modelling

42

Cryptanalysis

Take

Algebraic attacks
Attacks reducing MCE/ATFE to the

problem of solving a system of polynomial
equations.

Take

Combinatorial attacks

Collision search attacks using isometry-
invariant substructures

Direct
modelling

Minors
modelling

Improved
modelling

42

Cryptanalysis

Take

Algebraic attacks
Attacks reducing MCE/ATFE to the

problem of solving a system of polynomial
equations.

Take

Combinatorial attacks

Collision search attacks using isometry-
invariant substructures

Direct
modelling

Minors
modelling

Improved
modelling

Graph-based
algorithm

Leon-like
algorithm

Algebraic attacks

44

Direct algebraic attack

The MCE problem in matrix form

Let be a basis of code and let be a basis of code . Find ,
 and such that

(C(1), …, C(k)) 𝒞 (D(1), …, D(k)) 𝒟 A ∈ GLm(𝔽q)
B ∈ GLn(𝔽q) T ∈ GLk(𝔽q)

D(i) = ∑
1≤ j≤k

tj,iAC(j)B, ∀1 ≤ i ≤ k

44

Direct algebraic attack

The MCE problem in matrix form

Let be a basis of code and let be a basis of code . Find ,
 and such that

(C(1), …, C(k)) 𝒞 (D(1), …, D(k)) 𝒟 A ∈ GLm(𝔽q)
B ∈ GLn(𝔽q) T ∈ GLk(𝔽q)

D(i) = ∑
1≤ j≤k

tj,iAC(j)B, ∀1 ≤ i ≤ k

Alternatively, this gives a better modelling:

∑
1≤ j≤k

tj,iD(j) = AC(i)B, ∀1 ≤ i ≤ k

45

Minors modelling

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))

45

Minors modelling

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))For a matrix , let be a mapping that sends a matrix to the vector

 obtained by ‘flattening’ : 
 

C ∈ ℳm,n(𝔽q) Vec C
Vec(C) ∈ 𝔽mn

q C

Vec : C =
c1,1 … c1,n

⋮ ⋱ ⋮
cm,1 … cm,n

↦ Vec(C) = (c1,1, …, c1,n, …, cm,1, …, cm,n)

45

Minors modelling

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))

46

Minors modelling

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))

 is a codeword in .A⊤C(i)B 𝒟

All the minors of are zero.G

46

Minors modelling

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))

 is a codeword in .A⊤C(i)B 𝒟

All the minors of are zero.G

46

Minors modelling

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))

 is a codeword in .A⊤C(i)B 𝒟

All the minors of are zero.G

46

Minors modelling

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))

 is a codeword in .A⊤C(i)B 𝒟

All the minors of are zero.G

46

Minors modelling

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))

 is a codeword in .A⊤C(i)B 𝒟

All the minors of are zero.G

47

Minors modelling: complexity

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))

MCE ATFE

47

Minors modelling: complexity

Bilinear system of  
• equations

• variables

k(nm − k)

n2 + m2

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))

MCE ATFE

47

Minors modelling: complexity

Bilinear system of  
• equations

• variables

k(nm − k)

n2 + m2

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))

MCE ATFE

Algebraic solver for bilinear systems 
(Gröbner basis)

47

Minors modelling: complexity

Bilinear system of  
• equations

• variables

k(nm − k)

n2 + m2

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))

MCE ATFE

Quadratic system of  

• equations

• variables

n((n
2) − n)

n2

Algebraic solver for bilinear systems 
(Gröbner basis)

47

Minors modelling: complexity

Bilinear system of  
• equations

• variables

k(nm − k)

n2 + m2

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))

MCE ATFE

Quadratic system of  

• equations

• variables

n((n
2) − n)

n2

Algebraic solver for bilinear systems 
(Gröbner basis)

MQ solver 
(Gröbner basis)

47

Minors modelling: complexity

Bilinear system of  
• equations

• variables

k(nm − k)

n2 + m2

G =

Vec(A⊤C(i)B)
Vec(D(1))

⋮
Vec(D(n))

MCE ATFE

Quadratic system of  

• equations

• variables

n((n
2) − n)

n2

Algebraic solver for bilinear systems 
(Gröbner basis)

MQ solver 
(Gröbner basis)

48

Improved modelling

(Recall) we can see from three directions𝒞

• a -dimensional code in k 𝔽m×n
q • an -dimensional code in m 𝔽n×k

q • an -dimensional code in n 𝔽m×k
q

48

Improved modelling

(Recall) we can see from three directions𝒞

• a -dimensional code in k 𝔽m×n
q • an -dimensional code in m 𝔽n×k

q • an -dimensional code in n 𝔽m×k
q

The complexity of the minors modelling is  
min(GB(n2 + m2, k(nm − k), GB(n2 + k2, m(nk − m), GB(k2 + m2, n(km − n))

48

Improved modelling

(Recall) we can see from three directions𝒞

• a -dimensional code in k 𝔽m×n
q • an -dimensional code in m 𝔽n×k

q • an -dimensional code in n 𝔽m×k
q

The complexity of the minors modelling is  
min(GB(n2 + m2, k(nm − k), GB(n2 + k2, m(nk − m), GB(k2 + m2, n(km − n))

Include all three packets of constraints !

49

Improved modelling: complexity

MCE

Tri-homogeneous system of  
• equations of tri-degree  

  equations of tri-degree  
  equations of tri-degree

• variables

k(nm − k) (1,1,0)
m(nk − m) (1,0,1)
n(km − n) (0,0,1)

n2 + m2 + k2

Algebraic solver 
(Gröbner basis)

49

Improved modelling: complexity

MCE ATFE

No added constraints.

Tri-homogeneous system of  
• equations of tri-degree  

  equations of tri-degree  
  equations of tri-degree

• variables

k(nm − k) (1,1,0)
m(nk − m) (1,0,1)
n(km − n) (0,0,1)

n2 + m2 + k2

Algebraic solver 
(Gröbner basis)

Combinatorial attack

51

Collision

We have a collision when we know a codeword in that maps to a codeword in . C 𝒞 D 𝒟

 D = ACB

51

Collision

We have a collision when we know a codeword in that maps to a codeword in . C 𝒞 D 𝒟

We can then infer linear constraints from

 A−1D = CB

 D = ACB

52

Collision

With two collisions, we get the following system

 A−1D1 = C1B
 A−1D2 = C2B

52

Collision

With two collisions, we get the following system

 A−1D1 = C1B
 A−1D2 = C2B

When , results in a linear system with the same number of variables and equations. n = m = k

52

Collision

With two collisions, we get the following system

 A−1D1 = C1B
 A−1D2 = C2B

When , results in a linear system with the same number of variables and equations. n = m = k

If are all full rank, we should have a unique solution.C1, C2, D1, D2

We can easily recover from .A A−1

53

Collision

We have a collision when we know a codeword in that maps to a codeword in . C 𝒞 D 𝒟

We can then infer linear constraints from

 A−1D = CB

 D = ACB

53

Collision

We have a collision when we know a codeword in that maps to a codeword in . C 𝒞 D 𝒟

We can then infer linear constraints from

 A−1D = CB

 D = ACB

If we add these linear constraints to the system obtained from the algebraic attack, we can
(sometimes) efficiently solve the system of equations and recover the isometry.

54

The birthday paradox

The birthday problem in collision search algorithms

We draw, randomly, elements from a set of size .  
How many times do we expect to draw an element before we get the same element
twice?

N

54

The birthday paradox

The birthday problem in collision search algorithms

We draw, randomly, elements from a set of size .  
How many times do we expect to draw an element before we get the same element
twice?

N

, for a small constant.≈ c N c

55

General collision attack
A, B - number of codewordsN

55

General collision attack
A, B - number of codewordsN

55

General collision attack
A, B - number of codewordsN

N N

55

General collision attack
A, B - number of codewordsN

N N

55

General collision attack
A, B - number of codewordsN

N N

55

General collision attack
A, B - number of codewordsN

N N

check if it’s a collision

56

General collision attack
A, B - number of codewordsN

dN dN

 - density of codewords
of rank
d

r

56

General collision attack
A, B - number of codewordsN

dN dN

 - density of codewords
of rank
d

r

56

General collision attack
A, B - number of codewordsN

dN dN

 - density of codewords
of rank
d

r

56

General collision attack
A, B - number of codewordsN

dN dN

check if it’s a collision

 - density of codewords
of rank
d

r

57

General collision attack

57

General collision attack

MinRank

57

General collision attack

MinRank

AC1 = D1B−1

AC2 = D2B−1

A−1D1 = C1B
A−1D2 = C2B

57

General collision attack

MinRank

AC1 = D1B−1

AC2 = D2B−1

A−1D1 = C1B
A−1D2 = C2B

Leon-like algorithm

58

Collision attack : complexity

58

Collision attack : complexity

1
d

⋅ dN ⋅ Cℙ

 - total number of elements in (number of codewords)N S*

 - proportion of elements in that satisfy (density of codewords of rank)d S* ℙ r

58

Collision attack : complexity

1
d

⋅ dN ⋅ Cℙ

 - total number of elements in (number of codewords)N S*

 - proportion of elements in that satisfy (density of codewords of rank)d S* ℙ r

Expected time to
find one element
that satisfies ℙ

58

Collision attack : complexity

1
d

⋅ dN ⋅ Cℙ

 - total number of elements in (number of codewords)N S*

 - proportion of elements in that satisfy (density of codewords of rank)d S* ℙ r

Expected time to
find one element
that satisfies ℙ

Number of
elements we want

to find

58

Collision attack : complexity

1
d

⋅ dN ⋅ Cℙ

 - total number of elements in (number of codewords)N S*

 - proportion of elements in that satisfy (density of codewords of rank)d S* ℙ r

Expected time to
find one element
that satisfies ℙ

Number of
elements we want

to find

Cost to check
whether an

element satisfies ℙ

58

Collision attack : complexity

1
d

⋅ dN ⋅ Cℙ

 - total number of elements in (number of codewords)N S*

 - proportion of elements in that satisfy (density of codewords of rank)d S* ℙ r

 dN ⋅ CFF

Expected time to
find one element
that satisfies ℙ

Number of
elements we want

to find

Cost to check
whether an

element satisfies ℙ

58

Collision attack : complexity

1
d

⋅ dN ⋅ Cℙ

 - total number of elements in (number of codewords)N S*

 - proportion of elements in that satisfy (density of codewords of rank)d S* ℙ r

 dN ⋅ CFF

Expected time to
find one element
that satisfies ℙ

Number of
elements we want

to find

Cost to check
whether an

element satisfies ℙ
Cartesian product
between two lists

of size dN

58

Collision attack : complexity

1
d

⋅ dN ⋅ Cℙ

 - total number of elements in (number of codewords)N S*

 - proportion of elements in that satisfy (density of codewords of rank)d S* ℙ r

 dN ⋅ CFF

Expected time to
find one element
that satisfies ℙ

Number of
elements we want

to find

Cost to check
whether an

element satisfies ℙ
Cartesian product
between two lists

of size dN

Cost to check
whether two

elements form a
collision

59

Collision attack : complexity

Depends on the choice of the predicate . The choice is made such that we obtain the optimal
balance between the two parts of the algorithm, aka. they take approximately the same time
(whenever possible).

ℙ

1
d

dN Cℙ ≈ dN CFF

59

Collision attack : complexity

Depends on the choice of the predicate . The choice is made such that we obtain the optimal
balance between the two parts of the algorithm, aka. they take approximately the same time
(whenever possible).

ℙ

1
d

dN Cℙ ≈ dN CFF

Best trade-off: when (assuming and are poly-time and comparable).d ≈ N− 1
3 Cℙ CFF

59

Collision attack : complexity

Depends on the choice of the predicate . The choice is made such that we obtain the optimal
balance between the two parts of the algorithm, aka. they take approximately the same time
(whenever possible).

ℙ

1
d

dN Cℙ ≈ dN CFF

Best trade-off: when (assuming and are poly-time and comparable).d ≈ N− 1
3 Cℙ CFF

Time complexity 𝒪(N 2
3)

Memory complexity 𝒪(N 1
3)

60

Why not ?
A, B - number of codewordsN

N N

check if it’s a collision

61

Distinguishing isomorphism invariants

A distinguishing invariant for QMLE (a variant of the isomorphism of polynomials problem) over .𝔽2

[BFV] Bouillaguet, Fouque, Véber. Graph-Theoretic Algorithms for the Isomorphism of Polynomials Problem. (2012)

A distinguishing invariant for ATFE with parameter .n = 9

[Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)

A distinguishing invariant for MCE and ATFE.

[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)

A distinguishing invariant for MCE and ATFE.

[RS] Ran, Samardjiska. Rare structures in tensor graphs - Bermuda triangles for cryptosystems based on the Tensor Isomorphism problem. (2024)

Motivation & recap

63

Signatures from equivalence problems

Patarin’s signature scheme:

Equivalence-based digital signature schemes in the NIST competition (and elsewhere):

MEDS
ALTEQ

Linear code equivalence

Matrix code equivalence

Alternating trilinear form equivalence

Isomorphism of polynomials

SeaSign, SQISign: Isogeny between elliptic curves

…

LESS:

HAWK: Lattice isomorphism

63

Signatures from equivalence problems

Patarin’s signature scheme:

Equivalence-based digital signature schemes in the NIST competition (and elsewhere):

MEDS
ALTEQ

Linear code equivalence

Matrix code equivalence

Alternating trilinear form equivalence

Isomorphism of polynomials

SeaSign, SQISign: Isogeny between elliptic curves

…

LESS:

HAWK: Lattice isomorphism

63

Signatures from equivalence problems

Patarin’s signature scheme:

Equivalence-based digital signature schemes in the NIST competition (and elsewhere):

MEDS
ALTEQ

Linear code equivalence

Matrix code equivalence

Alternating trilinear form equivalence

Isomorphism of polynomials

SeaSign, SQISign: Isogeny between elliptic curves

…

LESS:

HAWK: Lattice isomorphism

64

Cryptanalysis timeline

2021 20242022 2023

64

Cryptanalysis timeline

2021 20242022 2023

[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)

[CDG]

64

Cryptanalysis timeline

2021 20242022 2023

[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)

[CDG]

[RST] Reijnders, Samardjiska, Trimoska. Hardness estimates of the Code Equivalence Problem in the Rank Metric. (2021)

[RST]

64

Cryptanalysis timeline

2021 20242022 2023

[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)

[CDG]

[RST] Reijnders, Samardjiska, Trimoska. Hardness estimates of the Code Equivalence Problem in the Rank Metric. (2021)

[RST]

[CNPRRST] Chou, Niederhagen, Persichetti, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Take your MEDS: Digital Signatures from Matrix Code Equivalence. (2022)

[CNPRRST]

64

Cryptanalysis timeline

2021 20242022 2023

[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)

[CDG]

[RST] Reijnders, Samardjiska, Trimoska. Hardness estimates of the Code Equivalence Problem in the Rank Metric. (2021)

[RST]

[CNPRRST] Chou, Niederhagen, Persichetti, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Take your MEDS: Digital Signatures from Matrix Code Equivalence. (2022)

[CNPRRST]

[CNPRRRST] Chou, Niederhagen, Persichetti, Ran, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Matrix Equivalence Digital Signature Scheme. (2023)

[CNPRRRST]

64

Cryptanalysis timeline

2021 20242022 2023

[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)

[CDG]

[RST] Reijnders, Samardjiska, Trimoska. Hardness estimates of the Code Equivalence Problem in the Rank Metric. (2021)

[RST]

[CNPRRST] Chou, Niederhagen, Persichetti, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Take your MEDS: Digital Signatures from Matrix Code Equivalence. (2022)

[CNPRRST]

[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)

[NQT]

[CNPRRRST] Chou, Niederhagen, Persichetti, Ran, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Matrix Equivalence Digital Signature Scheme. (2023)

[CNPRRRST]

64

Cryptanalysis timeline

2021 20242022 2023

[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)

[CDG]

[RST] Reijnders, Samardjiska, Trimoska. Hardness estimates of the Code Equivalence Problem in the Rank Metric. (2021)

[RST]

[CNPRRST] Chou, Niederhagen, Persichetti, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Take your MEDS: Digital Signatures from Matrix Code Equivalence. (2022)

[CNPRRST]

[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)

[NQT]

[CNPRRRST] Chou, Niederhagen, Persichetti, Ran, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Matrix Equivalence Digital Signature Scheme. (2023)

[CNPRRRST] [RS]

[RS] Ran, Samardjiska. Rare structures in tensor graphs - Bermuda triangles for cryptosystems based on the Tensor Isomorphism problem. (2024)

65

Cryptanalysis timeline

2021 20242022 2023

[CDG] [RST] [CNPRRST] [CNPRRRST] [NQT] [RS][RS]

65

Cryptanalysis timeline

2021 20242022 2023

[CDG] [RST] [CNPRRST] [CNPRRRST]

[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022)

[TDJPQS]
[NQT] [RS][RS]

65

Cryptanalysis timeline

2021 20242022 2023

[CDG] [RST] [CNPRRST] [CNPRRRST]

[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022)

[TDJPQS]

[Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)

[Beu]
[NQT] [RS][RS]

65

Cryptanalysis timeline

2021 20242022 2023

[CDG] [RST] [CNPRRST] [CNPRRRST]

[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022)

[TDJPQS]

[Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)

[Beu]

[RST] Ran, Samardjiska, Trimoska. Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem. (2023)

[RST]
[NQT] [RS][RS]

65

Cryptanalysis timeline

2021 20242022 2023

[CDG] [RST] [CNPRRST] [CNPRRRST]

[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022)

[TDJPQS]

[Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)

[Beu]

[RST] Ran, Samardjiska, Trimoska. Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem. (2023)

[RST]

[BDNPQST]. Bläser, Duong, Narayanan, Plantard, Qiao, Sipasseuth, Tang. The ALTEQ Signature Scheme. (2023)

[BDNPQST]
[NQT] [RS][RS]

65

Cryptanalysis timeline

2021 20242022 2023

[CDG] [RST] [CNPRRST] [CNPRRRST]

[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022)

[TDJPQS]

[Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)

[Beu]

[RST] Ran, Samardjiska, Trimoska. Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem. (2023)

[RST]

[BDNPQST]. Bläser, Duong, Narayanan, Plantard, Qiao, Sipasseuth, Tang. The ALTEQ Signature Scheme. (2023)

[BDNPQST]
[NQT]

[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)

[RS][RS]

65

Cryptanalysis timeline

2021 20242022 2023

[CDG] [RST] [CNPRRST] [CNPRRRST]

[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022)

[TDJPQS]

[Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)

[Beu]

[RST] Ran, Samardjiska, Trimoska. Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem. (2023)

[RST]

[BDNPQST]. Bläser, Duong, Narayanan, Plantard, Qiao, Sipasseuth, Tang. The ALTEQ Signature Scheme. (2023)

[BDNPQST]
[NQT]

[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)

[RS]

[RS] Ran, Samardjiska. Rare structures in tensor graphs - Bermuda triangles for cryptosystems based on the Tensor Isomorphism problem. (2024)

[RS]

66

Cryptanalysis timeline

[TDJPQS]

2021 20242022 2023

[CDG] [RST] [CNPRRST] [CNPRRRST] [NQT]
[Beu] [RST] [BDNPQST]

[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022)

[Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)
[RST] Ran, Samardjiska, Trimoska. Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem. (2023)

[BDNPQST]. Bläser, Duong, Narayanan, Plantard, Qiao, Sipasseuth, Tang. The ALTEQ Signature Scheme. (2023)
[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)

[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)
[RST] Reijnders, Samardjiska, Trimoska. Hardness estimates of the Code Equivalence Problem in the Rank Metric. (2021)

[CNPRRST] Chou, Niederhagen, Persichetti, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Take your MEDS: Digital Signatures from Matrix Code Equivalence. (2022)

[CNPRRRST] Chou, Niederhagen, Persichetti, Ran, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Matrix Equivalence Digital Signature Scheme. (2023)

[RS]

[RS] Ran, Samardjiska. Rare structures in tensor graphs - Bermuda triangles for cryptosystems based on the Tensor Isomorphism problem. (2024)

66

Cryptanalysis timeline

[TDJPQS]

2021 20242022 2023

[CDG] [RST] [CNPRRST] [CNPRRRST] [NQT]
[Beu] [RST] [BDNPQST]

[TDJPQS] Tang, Duong, Joux, Plantard, Qiao, Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. (2022)

[Beu] Beullens. Graph-Theoretic Algorithms for the Alternating Trilinear Form Equivalence Problem. (2022)
[RST] Ran, Samardjiska, Trimoska. Algebraic Algorithm for the Alternating Trilinear Form Equivalence Problem. (2023)

[BDNPQST]. Bläser, Duong, Narayanan, Plantard, Qiao, Sipasseuth, Tang. The ALTEQ Signature Scheme. (2023)
[NQT] Narayanan, Qiao, Tang. Algorithms for Matrix Code and Alternating Trilinear Form Equivalences via New Isomorphism Invariants. (2024)

[CDG] Couvreur, Debris-Alazard, Gaborit. On the hardness of code equivalence problems in rank metric. (2020)
[RST] Reijnders, Samardjiska, Trimoska. Hardness estimates of the Code Equivalence Problem in the Rank Metric. (2021)

[CNPRRST] Chou, Niederhagen, Persichetti, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Take your MEDS: Digital Signatures from Matrix Code Equivalence. (2022)

[CNPRRRST] Chou, Niederhagen, Persichetti, Ran, Randrianarisoa, Reijnders, Samardjiska, Trimoska. Matrix Equivalence Digital Signature Scheme. (2023)

Thank you !

[RS]

[RS] Ran, Samardjiska. Rare structures in tensor graphs - Bermuda triangles for cryptosystems based on the Tensor Isomorphism problem. (2024)

