Disorientation faults in CSIDH

TU/e

Physical attacks: trigger an error during the execution of sensitive computations; infer secret information from faulty outputs;

Takeaway:

- We propose lightweight countermeasures.
- The security of CSIDH is not compromised.
- Alice and Bob start on a common public node on a graph.
- They can not compute the whole graph, but they can walk on it \rightarrow compute a step and see on which node we arrive.
- A path on the graph:

3	5	7	11	13
1	-1	0	2	0

- Goal: walk on the graph and end up on a common secret node.
- The catch: walking on the graph is commutative: the order in which the steps are taken does not matter, only the number of steps of each size degree.

Walking on the graph

Magic box

Cards with instructions on how to compute steps.

- Some cards are for walking in the positive, and some are for walking in the negative direction.
- Some cards are missing instructions for certain steps (unlucky).

- Eve will relay the messages between Alice and Bob.

$$
\begin{array}{|c|c|c|c|c|}
\left.\hline \text { Node } A+\begin{array}{|c|c|c|c|c|c|c|}
\hline 3 & 5 & 7 & 11 & 13 \\
\hline 5 & -2 & 1 & 0 & -4 \\
\hline
\end{array}=\begin{array}{|c|c|c|c|c|c|c|}
\hline 3 & 5 & 7 & 11 & 13 \\
\hline 1 & -1 & 0 & 2 & 0 \\
\hline
\end{array} \mathbf{N o d e} B+\begin{array}{|c|}
\hline
\end{array}\right) \\
\hline
\end{array}
$$

- Eve will relay the messages between Alice and Bob.
- She brings the magic box.

Alice gets a card with instructions.

Alice gets a card with instructions.

- Alice rolls 74 dice. Each dice has ℓ_{i} sides for $\ell_{i} \in\{3,5, \ldots, 377,587\}$.
- Getting a 'one' on the dice with ℓ_{i} sides: Alice gets a card without instructions for making ℓ_{i}-steps.
- Getting anything else: Alice gets a card with instructions for making ℓ_{i}-steps. Instructions are either for positive or negative steps, both with equal probability.
- Alice can compute all or some of the steps that she gets instructions for. Each step is computed at most once.
- Round: the process from rolling the dice to computing all possible steps.
- Alice performs as many rounds as she needs to compute all steps from the secret key.

Computing the secret path (example)

Alice's secret key | 3 | 5 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | 0 | 3 | 0 |

Left to compute | 3 | 5 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | 0 | 3 | 0 |

Alice's secret key

3	5	7	11	13
$\mathbf{1}$	-1	0	3	0

Left to compute

3	5	7	11	13
1	-1	0	3	0

Computing the secret path (round 1)

\section*{Alice's secret key
 | 3 | 5 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | 0 | 3 | 0 |}

Left to compute | 3 | 5 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | 0 | 2 | 0 |

Computing the secret path (round 2)

Alice's secret key | 3 | 5 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | 0 | 3 | 0 |

Left to compute | 3 | 5 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 2 | 0 |

Computing the secret path (round 3)

Alice's secret key | 3 | 5 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | 0 | 3 | 0 |

Left to compute | 3 | 5 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 |

Computing the secret path (round 4)

Alice's secret key | 3 | 5 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | 0 | 3 | 0 |

Left to compute | 3 | 5 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |

- Alice rolls 74 dice. Each dice has ℓ_{i} sides for $\ell_{i} \in\{3,5, \ldots, 377,587\}$.
- Getting a 'one' on the dice with ℓ_{i} sides: Alice gets a card without instructions for making ℓ_{i}-steps.
- Getting anything else: Alice gets a card with instructions for making ℓ_{i}-steps. Instructions are either for positive or negative steps, both with equal probability.
- Alice can compute all or some of the steps that she gets instructions for. Each step is computed at most once.
- Round: the process from rolling the dice to computing all possible steps.
- Alice performs as many rounds as she needs to compute all steps from the secret key.
- An isogeny of elliptic curves is a non-zero map $E_{1} \rightarrow E_{2}$
- given by rational functions
- that is a group homomorphism.
- Degree of a separable isogeny: the size of its kernel, aka number of points on E_{1} mapping to the neutral element on E_{2}. Computing an isogeny of degree $\ell_{i} \rightarrow$ an ℓ_{i}-step.
- CSIDH: commutative group action suitable for non-interactive key exchange.
- Nodes $\rightarrow \mathbb{F}_{p}$-isomorphism classes of supersingular elliptic curves.

Edges \rightarrow isogenies between them.

- CSIDH-512: $p=4 \cdot \Pi \ell_{i}-1$, for $\ell_{i} \in\{3,5, \ldots, 377,587\} \rightarrow$ we can compute ℓ_{i}-steps in the positive or in the negative direction, for all ℓ_{i}.
- Exponents $-5 \leq e_{i} \leq 5$ for all $1 \leq i \leq 74$.

> Supersingular Isogeny Path problem Given E_{1} and E_{2} two supersingular elliptic curves over \mathbb{F}_{p}, find and isogeny from E_{1} to E_{2}.

[^0]Taking a positive ℓ_{i}-step.
(1) Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}. Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
(2) Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Taking a positive ℓ_{i}-step.
(1) Find a point $(x, y) \in E$ of order ℓ_{i} with $x, y \in \mathbb{F}_{p}$.

The order of any $(x, y) \in E$ divides $p+1$, so $\left[(p+1) / \ell_{i}\right](x, y)=\infty$ or a point of order ℓ_{i}. Sample a new point if you get ∞ (probability $1 / \ell_{i}$).
(2) Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

Taking a negative ℓ_{i}-step.
(1) Find a point $(x, y) \in E$ of order ℓ_{i} with $x \in \mathbb{F}_{p}$ but $y \notin \mathbb{F}_{p}$.

Same test as above to find such a point.
(2) Compute the isogeny with kernel $\langle(x, y)\rangle$ using Vélu's formulas.

```
Algorithm 2: Evaluating the class-group action.
    Input: \(A \in \mathbb{F}_{p}\) and a list of integers \(\left(e_{1}, \ldots, e_{n}\right)\).
    Output: \(B\) such that \(\left[\ell_{1}^{e_{1}} \cdots \vdash_{n}^{e_{n}}\right] E_{A}=E_{B}\) (where \(E_{B}: y^{2}=x^{3}+B x^{2}+x\) ).
    While some \(e_{i} \neq 0\) do
        Sample a random \(x \in \mathbb{F}_{p}\).
        Set \(s \leftarrow+1\) if \(x^{3}+A x^{2}+x\) is a square in \(\mathbb{F}_{p}\), else \(s \leftarrow-1\).
        Let \(S=\left\{i \mid e_{i} \neq 0, \operatorname{sign}\left(e_{i}\right)=s\right\}\). If \(S=\emptyset\) then start over with a new \(x\).
        Let \(k \leftarrow \prod_{i \in S} \ell_{i}\) and compute \(Q \leftarrow[(p+1) / k] P\).
        For each \(i \in S\) do
            Compute \(R \leftarrow\left[k / \ell_{i}\right] Q\). If \(R=\infty\) then skip this \(i\).
            Compute an isogeny \(\varphi: E_{A} \rightarrow E_{B}: y^{2}=x^{3}+B x^{2}+x\) with \(\operatorname{ker} \varphi=R\).
            Set \(A \leftarrow B, Q \leftarrow \varphi(Q), k \leftarrow k / \ell_{i}\), and finally \(e_{i} \leftarrow e_{i}-s\).
```

Return A.

- Alice rolls 74 dice. Each dice has ℓ_{i} sides for $\ell_{i} \in\{3,5, \ldots, 377,587\}$.
- Getting a 'one' on the dice with ℓ_{i} sides : Alice gets a card without instructions for making ℓ_{i}-steps.
- Getting anything else: Alice gets a card with instructions for making ℓ_{i}-steps. Instructions are either for positive or negative steps, both with equal probability.
- Alice can compute all or some of the steps that she gets instructions for. Each step is computed at most once.
- Round: the process from rolling the dice to computing all possible steps.
- Alice performs as many rounds as she needs to compute all steps from the secret key.
- You bring stickers to put over the direction sign on the cards.

- Alice thinks she has a card with instructions for positive steps, but she has a card with instructions for negative steps.

Faulted paths

Alice's secret key | 3 | 5 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | 0 | 3 | 0 |

Faulted paths

Alice's secret key | 3 | 5 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | 0 | 3 | 0 |

Faulted paths

Alice's secret key | 3 | 5 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -1 | 0 | 3 | 0 |

Faulted paths

Alice's secret key

3	5	7	11	13
1	-1	0	3	0

Faulted paths

Alice's secret key

3	5	7	11	13
1	-1	0	3	0

Algorithm 2: Evaluating the class-group action.
Input: $A \in \mathbb{F}_{p}$ and a list of integers $\left(e_{1}, \ldots, e_{n}\right)$.
Output: B such that $\left[1_{1}^{e_{1}} \cdots e_{n}^{e_{n}}\right] E_{A}=E_{B}$ (where $E_{B}: y^{2}=x^{3}+B x^{2}+x$).
While some $e_{i} \neq 0$ do
Sample a random $x \in \mathbb{F}_{p}$.
Set $s \leftarrow+1$ if $x^{3}+A x^{2}+x$ is a square in \mathbb{F}_{p}, else $s \leftarrow-1$.
Let $S=\left\{i \mid e_{i} \neq 0, \operatorname{sign}\left(e_{i}\right)=s\right\}$. If $S=\emptyset$ then start over with a new x.
Let $k \leftarrow \prod_{i \in S} \ell_{i}$ and compute $Q \leftarrow[(p+1) / k] P$.
For each $i \in S$ do
Compute $R \leftarrow\left[k / \ell_{i}\right] Q$. If $R=\infty$ then skip this i.
Compute an isogeny $\varphi: E_{A} \rightarrow E_{B}: y^{2}=x^{3}+B x^{2}+x$ with $\operatorname{ker} \varphi=R$.
Set $A \leftarrow B, Q \leftarrow \varphi(Q), k \leftarrow k / \ell_{i}$, and finally $e_{i} \leftarrow e_{i}-s$.
Return A.

- Strategy: Collecting faulty output nodes from the first round, both from negative and positive steps.

- Strategy: Collecting faulty output nodes from the first round, both from negative and positive steps.

- Strategy: Collecting faulty output nodes from the first round, both from negative and positive steps.

- Probability of having a missing ℓ_{i} torsion.
- Incoming arrow: missing torsion in negative coefficients
- Outgoing arrow: missing torsion in positive coefficients

Recovering the entire secret key

- Strategy: Collecting faulty output nodes from the first 5 rounds, both from negative and positive steps.

Recovering the entire secret key

- Strategy: Collecting faulty output nodes from the first 5 rounds, both from negative and positive steps.
- How?
- Strategy: Collecting faulty output nodes from the first 5 rounds, both from negative and positive steps.
- How?
\hookrightarrow perform fault injection always in round 5 .

$$
\begin{aligned}
& ----(-) \\
& ++++(-) \\
& ++--(+) \\
& -+--(-)
\end{aligned}
$$

- Strategy: Collecting faulty output nodes from the first 5 rounds, both from negative and positive steps.
- How?
\hookrightarrow perform fault injection always in round 5 .

$$
\begin{aligned}
& ----(-) \\
& ++++(-) \\
& ++--(+) \\
& -+--(-)
\end{aligned} \quad \longrightarrow \text { effective }- \text { round-5 curve }
$$

- Strategy: Collecting faulty output nodes from the first 5 rounds, both from negative and positive steps.
- How?
\hookrightarrow perform fault injection always in round 5 .

$$
\begin{array}{ll}
----(-) & \longrightarrow \text { effective }- \text { round-5 curve } \\
++++(-) & \longrightarrow \text { effective }- \text { round-1 curve } \\
++--(+) & \\
-+--(-) &
\end{array}
$$

- Strategy: Collecting faulty output nodes from the first 5 rounds, both from negative and positive steps.
- How?
\hookrightarrow perform fault injection always in round 5 .

$$
\begin{aligned}
& ----(-) \\
& ++++(-) \\
& ++--(+) \\
& -+--(-)
\end{aligned}
$$

\longrightarrow effective - round-5 curve
\longrightarrow effective - round-1 curve
\longrightarrow effective + round- 3 curve

- Strategy: Collecting faulty output nodes from the first 5 rounds, both from negative and positive steps.
- How?
\hookrightarrow perform fault injection always in round 5 .

$$
\begin{aligned}
& ----(-) \\
& ++++(-) \\
& ++--(+) \\
& -+--(-)
\end{aligned}
$$

\longrightarrow effective - round-5 curve
\longrightarrow effective - round-1 curve
\longrightarrow effective + round- 3 curve
\longrightarrow effective - round-4 curve

- Strategy: Collecting faulty output nodes from the first 5 rounds, both from negative and positive steps.

- Strategy: Collecting faulty output nodes from the first 5 rounds, both from negative and positive steps.

pubcrawl
- Strategy: Collecting faulty output nodes from the first 5 rounds, both from negative and positive steps.

Eve's graph

- Strategy: Collecting faulty output nodes from the first 5 rounds, both from negative and positive steps.

Eve's graph

- Strategy: Collecting faulty output nodes from the first 5 rounds, both from negative and positive steps.

- Strategy: Collecting faulty output nodes from the first 5 rounds, both from negative and positive steps.

- Strategy: Collecting faulty output nodes from the first 5 rounds, both from negative and positive steps.

- We have 74 primes, 10 gaps. Pigeon principle: at least one of the gaps is of distance at most 7 .
- We have 74 primes, 10 gaps. Pigeon principle: at least one of the gaps is of distance at most 7 .
- Reducing the search space I: when we find the orientation of some primes.
- We have 74 primes, 10 gaps. Pigeon principle: at least one of the gaps is of distance at most 7 .
- Reducing the search space I: when we find the orientation of some primes.
- Reducing the search space II: when we find the coefficient of some primes.

Strategy I:

Minimum spanning tree search algorithm

Strategy I:

Minimum spanning tree search algorithm
(not very reliable)

Strategy I:

Minimum spanning tree search algorithm (not very reliable)

Strategy II:

An isogenist with a pen

Strategy I:

Minimum spanning tree search algorithm
(not very reliable)

Strategy II:

An isogenist with a pen
\hookrightarrow Demo

Toy example (CSIDH-103)

- Attack on CSIDH
- Attack on CTIDH
- Exploiting the twist
- Lightweight countermeasures

eprint: 2022/1202

[^0]: Edges are 3, 5, and 7-isogenies. Image credit: Lorenz Panny.

