A SAT-based approach for index calculus on binary

elliptic curves

Monika Trimoska Sorina lonica Gilles Dequen

MIS Laboratory, University of Picardie Jules Verne

MSR
05 December 2019



Given a finite cyclic group (G, +) and two elements g, h € G,
find x € Z such that

h=x-g.
| Genericattacks

Pollard rho, Baby-step Giant-step, Kangaroo

Subexponential in ((Z/pZ)*,"). @é




Let [Fon be a finite field and E be an elliptic curve defined by

[ E:y’+xy=x3+ax’>+b ]

with a, b € Fan.
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Let [Fon be a finite field and E be an elliptic curve defined by

[ E:y’+xy=x3+ax’>+b ]

with a, b € Fan.

Find x, such that xP = Q, where P, Q € E(Fzn).

Find Py,..., Pm_1 € E(Fan), such that

Pn=P1+...+Pmn_1




Point

So(X1, X2) = X1 + Xo,
S3(X1, Xo, X3) = XZX5 + X2XZ + X1 Xo X3 + X3 X2 + b,

For m> 4

Sm( X1, .., Xm) =
ResX(Sm—k(X17 LU 7Xm—k—17X)) 5k+2(Xm—k7 LRI aXma X))
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So(X1, X2) = X1 + Xo,
S3(X1, Xo, X3) = XZX5 + X2XZ + X1 Xo X3 + X3 X2 + b,

For m> 4

Sm(X17 °00 va) =
ReSX(Sm—k(X17 o aXm—k—17X)7 5k+2(Xm—k7 o aXma X))

Pi+...+Ppn=0 <— Sm(Xpl,...,Xpm):O




Rewrite the equation S;,(Xi,...,Xm) = 0 as a system of n
equations over 5.

Example (trivial case of m = 2):
S2(X1,X2) =0
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Rewrite the equation S;,(Xi,...,Xm) = 0 as a system of n
equations over 5.

Example (trivial case of m = 2):

$2(X1, Xo) = 0

X1+Xo=0

(a10+aat+...+ 317,,,11“”_1) + (a20 + a2t +...+ az,,,,lt”_l) =0
(a10+ a20) + (a11 + a2 1)t + ...+ (an1 +azn1)t" 1 =0

aio+ao=0
aj1+a1 =0

atn—1+ax,-1=0
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Rewrite S, in terms of the elementary symmetric polynomials

€] - Z Xf17

1<i<m

e - E XI'1XI'27
1<i,ib<m

en = H X,'.
1<i<m
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PDP al

Choice of a factor base : an /-dimensional vector subspace V of
[Fon /2. When | ~ - the system has a reasonable chance to have

a solution.

Xlzal’o—l-...—i-a]_/_lt_

X5 ao+t...+azx -1 A=

Xm=amo+ ...+ ams1t'

-1
et=eo0+t...+e 1t

e =¢eq+t...+ 62,2/—21“2/_2

en=€mo+...+ em’m(/_l)tm(l_l)




o Equations defining symmetric polynomials
€1,0=2a10+t ...+ ampo
€11 =a11+t...+am1
€mm(I—1) = a1,/ --- " dm,]-.

o Equations derived from the Weil descent




o Equations defining symmetric polynomials
e10=2aio0+...+amo
€11 =a11+t...+am1
€mm(I—1) = a1,/ --- " dm,]-.

o Equations derived from the Weil descent

The system is commonly solved using Grobner basis methods.




Algebraic model to SAT-reasoning model "

Variables in [F»: Propositional variables:
X1, X2, X3, X4, X5, X6. X1, X2, X3, X4, X5, Xg With truth
values in {TRUE, FALSE}

X1+ X2 X4 +X5:-%X+1=0 (x1 D (2 Axa) @ (x5 A x6)) A

X1 +X2+Xs+x5+1=0 (1@ x ®x @ x5) A
X3+Xs+X-xa+1=0 _)(X3EBX4@(X2/\X4))/\

X2+ X5+ X0 Xg+X5-%6+1=0 (e®xs®(x2Ax)D (x5 A X)) A
x3+x4+x%x6+1=0 (x3 D xa D x6)



Add new variable x7 to substitute the conjunction x> A x4. We
have that
x7 S (x2 A\ xa)

|

(X7 = (X2 VAN X4)) A ((X2 VAN X4) = X7)

4 N\

—x7 V (X2 A xa) ~(x2 A Xa) V X7

VAR |

(—=x7 Vx2) A (—x7 V xa) XV xg V X7
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Add new variable x;7 to substitute the conjunction x> A xz. We
have that
x7 & (x2 A xa)

|

(X7 = (Xg A X4)) A ((X2 A X4) = X7)

4 N\

—x7 V (X2 A xa)

N |
Crr G
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“(x2 A xq) V x7



Propositional variables:
X1, X2, X3, Xa, X5, X¢ with truth values in {TRUE, FALSE}

(—x7 V x2) A

(—x7 V xa) A

(mx2 V —xa V x7) A
(—x8 V x5) A

(—|X3 \ X6) N

(—x5 V %6 V Xxg) A
(x1 ® x7 ® x8) A

(x1 D x2 D xa B x5) A
(x3@xa @ x7) A

(x2 ® x5 B x7 B x3) A
(x3 ® x4 © Xg)

(Ca® (2N x1)® (x5 Axp)) A

(x1 D x2 D x4 B x5) A

(3B xs B (x2Axq)) A

(2 ® x5 B (x2Axq) D (x5 A Xp)) A
(x3® xa D x6)



WDS

Based on the Davis-Putnam-Logemann-Loveland (DPLL) al-
gorithm.

Recursively building a binary search-tree of height equivalent
(at worst) to the number of variables.
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Based on the Davis-Putnam-Logemann-Loveland (DPLL) al-
gorithm.

Recursively building a binary search-tree of height equivalent
(at worst) to the number of variables.

X1
=
X2
£ N
Wea=z”? X3
B NT

Xg - X4
ROTNT RSTONT
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Based on the Davis-Putnam-Logemann-Loveland (DPLL) al-
gorithm.

Recursively building a binary search-tree of height equivalent
(at worst) to the number of variables.
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Based on the Davis-Putnam-Logemann-Loveland (DPLL) al-
gorithm.

Recursively building a binary search-tree of height equivalent
(at worst) to the number of variables.

Xa X4
RSINT RSTNT
X XX X
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. oNFmodule

Performs unit propagation on CNF-clauses.

Performs unit propagation on the parity constraints. When
all except one literal in a XOR clause is assigned, we infer the
truth value of the last literal according to parity reasoning.

Performs Gaussian elimination on the XOR system.




o Exploiting the symmetry of Semaev's summation polynomials:
when Xi, ..., X, is a solution, all permutations of this set are
a solution as well.

o Establish the following constraint X; < X5 < ... < X,.

o Implement constraint in the solver using a tree-pruning-like
technique.

o Optimizes the complexity by a factor of m!.



Experimen

6 17 | 207.220 NA 3601 142.119 NA 3291
19 | 215.187 NA 3940 155.765 NA 4091
Grobner basis
- 19 | 3854.708 NA 38763 | 2650.696 NA 38408
23 | 3128.844 NA 35203 2286.136 NA 35162
5 17 .601 49117 1.4 3.851 254686 1.4
19 470 38137 1.4 3.913 255491 1.4
WDSAT
7 19 9.643 534867 16.7 44.107 2073089 16.7
23 9.303 477632 16.7 47.347 2067168 16.7
5 17 .220 17792 1.4 .605 43875 1.4
19 .243 19166 1.4 .639 44034 1.4
WDSAT breaking-sym
7 19 2.205 130062 1.4 6.859 351353 1.4
23 3.555 189940 1.4 7.478 350257 1.4

Table: Comparing the WDSAT approach with the Grébner basis approach for solving the PDP. Running times

are in seconds and memory is in MB.
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8 | 23| 29.584 1145966 17.0 81.767 2800335 17.0
37 447 10557129 17.1 1048 22396994 17.1
47 609 12675174 17.2 1167 22381494 17.2
’ 59 611 11297325 17.3 1327 22390211 17.3
67 677 11608420 17.4 1430 22388053 17.4

47 5847 95131900 17.3 11963 179019409 17.3
59 6849 97254458 17.4 13649 179067171 17.4

10 67 6530 882902215 17.4 14555 179052277 17.4
79 7221 86174432 17.5 16294 179043408 17.5
59 | 64162 | 727241718 19.2 135801 | 1432191354 19.2
- 67 | 70075 | 741222864 19.3 145357 | 1432183842 19.3

79 | 61370 | 599263451 19.4 161388 | 1432120827 19.4
89 | 85834 | 736610196 19.5 175718 | 1432099666 19.5

Table: Experimental results using the WDSAT solver with breaking symmetry. Running times are in seconds and
memory is in MB.



o When solving the PDP for prime degree extension fields [,
Grobner basis methods can be replaced with a SAT-based
approach.

o The dedicated sAT-solver, WDSAT, yields significantly faster
running times.

o The memory is no longer a constraint for the PDP.
o Preprint at https://eprint.iacr.org/2019/313


https://eprint.iacr.org/2019/313

