

Time-Memory Trade-offs for Parallel Collision Search Algorithms

Monika Trimoska

Sorina Ionica

Gilles Dequen

Laboratoire MIS, Université de Picardie Jules Verne

Journées Codage & Cryptographie 11 oct. 2018, Aussois

- Given a function $f: S \rightarrow S$ on a finite set S, we call **collision** any pair a,b of elements in S such that f(a) = f(b).
- Pollard's rho method

JC2 2018

• Ideally, f is a random mapping.

mis Collision Search Applications

One collision application: discrete logarithm
Given a group G of prime order and g a generator of G and h ∈ G, find x such that,

$$g^{x} = h$$

• Multi-collision application: **Meet-In-The-Middle** Attack on the 3-DES with three independent keys. In the worst case $\frac{n}{2}$ collisions are generated.

mis Parallel Collision Search

van Oorschot & Wiener, 1996

- Collision : find two different input points that produce the same output point.
- Distinguished points : a set of points having an easily testable property.

ex. The x-coordinate has 3 trailling zero bits: 10101101000

- Only distinguished points are stored in memory.
- heta the proportion of distinguished points in a set S.

mis Time complexity

Theorem. In the parallel collision search algorithm, the expected running time to find *m* collisions with a memory constraint of *w* words is:

mis Time complexity

Corollary. The optimum proportion of distinguished points minimizing the time complexity is

$$\theta = \frac{\sqrt{w^2 + 2nw}}{n}$$

The running time of the parallel collision search algorithm for finding $\frac{n}{2}$ collisions is bounded by:

$$O\left(\frac{n}{L}\sqrt{1+\frac{2n}{w}}\right)$$

Memory is an important factor in the running time complexity.

- Requirements:
 - Space efficient
 - Thread-safe
 - Fast look-up and insertion
- Most commonly used structure: Hash table

JC2 2018

- Requirements:
 - Space efficient
 - 🔶 Thread-safe
 - Fast look-up and insertion
- Most commonly used structure: Hash table

• Alternative: Radix tree

Exemple of a radix tree holding the set 12345, 12544, 12567, 65476

0

- Requirements:
 - Space efficient
 - Thread-safe
 - Fast look-up and insertion
- Most commonly used structure: Hash table

• Alternative: Radix tree

Exemple of a radix tree holding the set 12345, 12544, 12567, 65476

- Requirements:
 - Space efficient
 - Thread-safe

Fast look-up and insertion

• Most commonly used structure: Hash table

• Alternative: Radix tree

Exemple of a radix tree holding the set 12345, 12544, 12567, 65476

mis Data structure

- Requirements:
 - Space efficient
 - Thread-safe
 - Fast look-up and insertion
- Most commonly used structure: Hash table

• Alternative: Radix tree

Exemple of a radix tree holding the set 12345, 12544, 12567, 65476

mis Packed Radix-Tree-List

Add the points to linked lists, each list starting from a leaf on the tree

Exemple of a radix tree holding the set 0011, 0031, 0121, 0122, 0212, etc.

mis Finding the optimal branching level

Find level l such that

There are no pending leaves

Linked lists are as short as possible

mis Finding the optimal branching level

Find level l such that

Linked lists are as short as possible

As per the Coupon collector's problem, the optimal level is l such that

$$b^l(\ln b^l + 0.577) \sim K$$

where **K** is the estimated number of stored points and **b** is the base of their numerical representation.

mis Implementation

• Collision search in $E(\mathbb{F}_p)$, with p prime, to solve the discrete logarithm problem.

•
$$\theta \sim \frac{1}{2^{b/4}}$$
 for a *b*-bit curve.

- In C, using external libraries GMP and OpenMP.
- 28-core Intel Xeon E5-2640 processor.
- Experimenting with 1 to 28 threads.
- Structure : Packed Radix-Tree-List.

Exemple of a radix tree holding the set 0011, 0031, 0121, 0122, 0212, etc.

mis When memory is limited

Running a multi-collision search while limiting the available memory proves that more storage space yields a faster algorithm.

Collisions	Memory limit	Runtime		Stored Points	
		PRTL	Hash table	PRTL	Hash table
400	10MB	14,3 min	18,8 min	474019	216459
10000	40MB	74,2 min	113,4 min	2104832	867429
50000	100MB	172,5 min	241,6 min	5262727	2169383

Multi-collision search for a 55-bit curve

Showed that memory is an important factor in the running time complexity

https://eprint.iacr.org/2017/581