
Cliquez pour modifier le style du titre
Monika Trimoska Sorina Ionica Gilles Dequen

Laboratoire MIS, Université de Picardie Jules Verne

Time-Memory Trade-offs for
Parallel Collision Search Algorithms

Journées Codage & Cryptographie
11 oct. 2018, Aussois

Collision Search

1
Time-Memory Trade-offs for PCS Algorithms JC2 2018

• Given a function f : S → S on a finite set S,
we call collision any pair a,b of elements in S such that
f(a) = f(b).

• Pollard’s rho method

• Ideally, f is a random mapping.

X1 f

X2

Xi

Xi+1

Xi+2
Xi+j

Collision Search Applications

Time-Memory Trade-offs for PCS Algorithms JC2 2018
2

• One collision application: discrete logarithm
Given a group G of prime order and g a generator of G
and h ∈ G, find x such that,

gx = h

• Multi-collision application: Meet-In-The-Middle
 Attack on the 3-DES with three independent keys.
 In the worst case collisions are generated. n

2

Parallel Collision Search

Time-Memory Trade-offs for PCS Algorithms JC2 2018
3

van Oorschot & Wiener, 1996

• Collision : find two different input points that
produce the same output point.

• Distinguished points : a set of points having an
easily testable property.

ex. The x-coordinate has 3 trailling zero bits:
10101101000

• Only distinguished points are stored in memory.

• - the proportion of distinguished points in a set S. θ

Time complexity

Time-Memory Trade-offs for PCS Algorithms JC2 2018
4

1
L (w

θ
+ (m −

w2

2θ2n
)
θn
w

+
2m
θ)

expected
number of
iterations

needed to
find and

store w points

number of collisions
found after

storing w points

expected number
of iterations needed
to find one collision
when w points are

stored

Theorem. In the parallel collision search algorithm, the expected
running time to find m collisions with a memory constraint of w words is:

Time complexity

Time-Memory Trade-offs for PCS Algorithms JC2 2018
5

Memory is an important factor in the running time
complexity.

Corollary. The optimum proportion of distinguished points
minimizing the time complexity is

The running time of the parallel collision search algorithm for finding
collisions is bounded by:

θ =
w2 + 2nw

n
.

n
2

O (n
L

1 +
2n
w)

Data structure

Time-Memory Trade-offs for PCS Algorithms JC2 2018
6

• Requirements:

• Most commonly used structure:
Hash table

Space efficient

Thread-safe

Fast look-up and insertion

Data structure

Time-Memory Trade-offs for PCS Algorithms JC2 2018
6

Space efficient

Thread-safe

Fast look-up and insertion

• Requirements:

• Most commonly used structure:
Hash table

• Alternative:
Radix tree Exemple of a radix tree holding the set

12345, 12544, 12567, 65476

Data structure

Time-Memory Trade-offs for PCS Algorithms JC2 2018
6

Space efficient

Thread-safe

Fast look-up and insertion

• Requirements:

• Most commonly used structure:
Hash table

• Alternative:
Radix tree Exemple of a radix tree holding the set

12345, 12544, 12567, 65476

Data structure

Time-Memory Trade-offs for PCS Algorithms JC2 2018
6

Space efficient

Thread-safe

Fast look-up and insertion

• Requirements:

• Most commonly used structure:
Hash table

• Alternative:
Radix tree Exemple of a radix tree holding the set

12345, 12544, 12567, 65476

Data structure

Time-Memory Trade-offs for PCS Algorithms JC2 2018
6

Space efficient

Thread-safe

Fast look-up and insertion

• Requirements:

• Most commonly used structure:
Hash table

• Alternative:
Radix tree Exemple of a radix tree holding the set

12345, 12544, 12567, 65476

Common prefixes

Pointers to empty branches

Packed Radix-Tree-List

Time-Memory Trade-offs for PCS Algorithms JC2 2018
7

Construct a radix tree up to certain level

Add the points to linked lists, each list starting from a leaf on the tree

Exemple of a radix tree holding the set 0011, 0031, 0121, 0122, 0212, etc.

Finding the optimal branching level

Time-Memory Trade-offs for PCS Algorithms JC2 2018
8

Find level such that

There are no pending leaves

Linked lists are as short as possible

l

Finding the optimal branching level

Time-Memory Trade-offs for PCS Algorithms JC2 2018
8

Find level such that

There are no pending leaves

Linked lists are as short as possible

As per the Coupon collector's problem, the optimal level is such that

bl(ln bl + 0.577) ∼ K

where K is the estimated number of stored points and b is the base of
their numerical representation.

l

l

Implementation

Time-Memory Trade-offs for PCS Algorithms JC2 2018
9

• Collision search in , with p prime, to solve the discrete logarithm problem.

• for a b-bit curve. θ ∼
1

2b/4

• In C, using external libraries GMP and OpenMP.

• Experimenting with 1 to 28 threads.

• Structure : Packed Radix-Tree-List.

Exemple of a radix tree holding the set 0011, 0031, 0121, 0122, 0212, etc.

• 28-core Intel Xeon E5-2640 processor.

E(𝔽p)

When memory is limited

Time-Memory Trade-offs for PCS Algorithms JC2 2018

Collisions Memory
limit

Runtime Stored Points

PRTL Hash table PRTL Hash table

400 10MB 14,3 min 18,8 min 474019 216459

10000 40MB 74,2 min 113,4 min 2104832 867429

50000 100MB 172,5 min 241,6 min 5262727 2169383

Multi-collision search for a 55-bit curve

10

Running a multi-collision search while limiting the available memory
proves that more storage space yields a faster algorithm.

In conclusion

Time-Memory Trade-offs for PCS Algorithms JC2 2018
11

Revisited one-collision and multi-collision time complexity

Showed that memory is an important factor in the

running time complexity

Proposed an alternative memory structure

https://eprint.iacr.org/2017/581

