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Elliptic curves



What is an elliptic curve?

Let Fq be a finite field. An elliptic curve over Fq is a curve given by an equation of the form

E : y2 = x3 + Ax + B

(short Weierstrass form)

with A,B ∈ Fq.

• There is also a requirement that the discriminant ∆ = 4A3 + 27B2 is nonzero.

• The set of points on E with the addition law form a group.

• The group law is constructed geometrically.
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The geometry of elliptic curves1

Adding points on an elliptic curve

•P •Q
•
R

•
P + Q

Addition P + Q

• Draw a line through P and Q

↪→ The line intersects the curve E at

a third point R

• Draw a vertical line through R

↪→ The line intersects E in another

point

• We define that point to be the sum of

P and Q

1Figures from the TikZ for Cryptographers library
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The geometry of elliptic curves

Adding points on an elliptic curve

•P •

•
2P

Doubling P + P

• Modify the first step : draw the

tangent line to E at P

O

Neutral element O

•P

•
−P

Inverse element −P
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The algebra of elliptic curves

The addition law on E has the following properties:

• P +O = P, for all P ∈ E

• Let P ∈ E . There is a point of E , denoted by −P , satisfying P + (−P) = O
• P + (Q + R) = (P + Q) + R, for all P,Q,R ∈ E

• P + Q = Q + P, for all P,Q ∈ E .

Elliptic curves with points in Fp are finite groups

• Closure

• Associativity

• Identity element

• Inverse element
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The algebra of elliptic curves

We can write down explicitly the formulas for the addition law on E .

↪→

Let P1 = (x1, y1) and P2 = (x2, y2),

then P1 + P2 = (x3, y3) = (λ2 − x1 − x2, λ(x3 − x1) + y1), where

λ =



y2 − y1
x2 − x1

, when P1 ̸= P2

3x21 + a

2y1
, when P1 = P2.
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Elliptic Curve Discrete Logarithm

Problem



Elliptic curve discrete logarithm problem

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given: points P,Q ∈ E (Fq)

Find: an integer x such that xP = Q

!

We can use the hardness of ECDLP only because computing multiples is easy.

↪→ We can compute mP in O(logm) steps by the usual Double-and-Add Method.

• First write m = m0 +m1 · 2 +m2 · 22 + · · ·+mr · 2r

• Then mP can be computed as mP = m0P +m1 · 2P +m2 · 22P + · · ·+mr · 2rP
• Requires r doublings (and sums)
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ECDLP applications

Figure: Diffie-Hellman key exchange
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ECDLP applications

• Diffie-Hellman key exchange

• ElGamal encryption and signatures

• Identification protocols

• Extension: Pairing-based crypto

• ECDSA used in all currently deployed cryptosystems:
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ECDLP attacks

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given: points P,Q ∈ E (Fq)

Find: an integer x such that xP = Q

Generic attacks

• Exhaustive Search

• Pollard’s rho method

• Baby-step Giant-step

• Kangaroo

• Parallel Collision Search

Attacks on specific families

• MOV attack: using the Weil/Tate pairing

• Anomalous curves

• Index calculus
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Parallel Collision Search



Collision search

What is a collision? Why does a collision help us solve the (EC)DLP?

↪→ Having two different linear combinations of a random

point R ∈ E (Fq)

R = aP + bQ

R = a′P + b′Q,

we infer that

aP + bQ = a′P + b′Q

(a− a′)P = (b′ − b)xP,

and we compute

x =
a− a′

b′ − b
(mod N).
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Collision search

Collision

Given a random map f : S → S on a finite set S of cardinality N, we call collision any pair R,

R ′ of elements in S such that f (R) = f (R ′).

Pollard’s Rho method

f
•
x0

•
xk+1

•
xk

•
xk+t

• Ideally, f is a random mapping.

• Expected number of steps until

the collision is found:√
πN

2
.
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Collision search

f (R) =


R + P if R ∈ S1
2R if R ∈ S2
R + Q if R ∈ S3,

Property of f
Input (aP + bQ) → Output (a′P + b′Q).

(If the input of f is linear combination of P and Q, the output of f is also a linear combination of P

and Q.)

Intuitively:

• Start from R = aP + bQ for some random a and b

• Walk the random walk until we find the same point twice

↪→ To discover the collision, we need to store all * the points that we compute.
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Parallel Collision Search

• Proposed by van Oorschot & Wiener (1996).

• Distinguished points : a set of points having an

easily testable property.

ex. The x-coordinate has 3 trailling zero bits:

10101101000.

• Only distinguished points are stored in memory.

• θ - the proportion of distinguished points in a set S .

• Complexity ? How many points do we expect to

compute (store) before a collision is found ?

↪→ The Birthday Paradox
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The Birthday Paradox (recall)

The birthday problem in collision search algorithms

We draw, randomly, elements from a set of size N.

How many times do we expect to draw an element before we get the same

element twice?

↪→ About a square root of the total number of elements.
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Complexity of the Parallel Collision Search

The expected number of distinguished points calculated before a

collision is found

E (X ) =

√
πN

2

Time complexity (for L threads)

O(
1

L

√
πN

2
)

Memory complexity

O(θ

√
πN

2
)
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Practical considerations

• Achieving perfect parallelization

• Shared memory VS Client-server setting

• Storage and lookup
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Index Calculus



Index calculus attack

• Originally, a method for computing discrete logarithms in the multiplicative group of a

finite field.

• Core ideas can be traced back to computation methods for discrete logs from the 19th

century.

• Subexponential in (Z/pZ)∗

• Core observations:

• Any natural number can be factored into prime numbers.
• As with the ordinary logarithm, there is a link between the multiplication of natural

numbers and the addition of discrete logarithms

log(q1 · · · · · qn) = log(q1) + · · ·+ log(qn) (mod p − 1)
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Index calculus attack (a toy example)

28 = 2x(mod 47), x =?

Let F = {R1,R2,R3,R4} = {2, 3, 5, 7} be a factor base

Relation search phase

Find relations of the form
∏4

j=1 R
rj
j ≡ 2r mod p
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Index calculus attack (a toy example)

28 = 2x(mod 47), x =?

Let F = {R1,R2,R3,R4} = {2, 3, 5, 7} be a factor base

Infer: log2 2 = 1, log2 3 = 42, log2 5 = 9, log2 7 = 12

log2 28 = log2(2
2 · 7) = 2 log2 2 + log2 7 = 14
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Index calculus attack

Algorithm summary

Input: a finite cyclic group (G ,+) and two elements g , h ∈ G

Output: x ∈ Z such that h = x · g

1 Finding an appropriate factor base B = {g1, ..., gk}, such that B ⊆ G

2 Relation search phase : find relations of the form

[ai ]g + [bi ]h =
n∑

j=1

[cij ]gj

for random integers ai ,bi .

3 Linear algebra phase : having matrices A = (aibi ) and M = (cij), find a kernel vector

v = (v1...vk) of the matrix M. Compute solution :

x = −(
∑
i

aivi )/(
∑
i

bivi )
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Index calculus on elliptic curves

• log(P1 · . . . · Pn) = log(P1) + · · ·+ log(Pn)

• ”Prime” points ?

• Point decomposition ?

↪→ The index calculus attack can be applied for elliptic curves over exten-

sion fields.
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Index calculus on binary elliptic curves

Let F2n be a finite field and E be an elliptic curve defined by

E : y2 + xy = x3 + ax2 + b

with a, b ∈ F2n .

Point decomposition phase of the Index calculus algorithm

Find P1, . . . ,Pm−1 ∈ E (F2n), such that

Pm = P1 + . . .+ Pm−1
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Point decomposition

Semaev’s summation polynomials (2004)

*In the case of characteristic 2 and 3

S2(X1,X2) = X1 + X2,

S3(X1,X2,X3) = X 2
1X

2
2 + X 2

1X
2
3 + X1X2X3 + X 2

2X
2
3 + b,

For m ≥ 4

Sm(X1, . . . ,Xm) =

ResX (Sm−k(X1, . . . ,Xm−k−1,X ),Sk+2(Xm−k , . . . ,Xm,X ))

For P1, . . . ,Pm ∈ E (F2n)

P1 + . . .+ Pm = O ⇐⇒ Sm(xP1 , . . . , xPm) = 0
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Weil descent

Gaudry and Diem (2008 and 2009)

Rewrite the equation Sm(X1, . . . ,Xm) = 0 as a system of n equations over F2.

Example (trivial case of m = 2):

S2(X1,X2) = 0

X1 + X2 = 0

(a1,0 + a1,1t + . . .+ a1,n−1t
n−1) + (a2,0 + a2,1t + . . .+ a2,n−1t

n−1) = 0

(a1,0 + a2,0) + (a1,1 + a2,1)t + . . .+ (a1,n−1 + a2,n−1)t
n−1 = 0


a1,0 + a2,0 = 0

a1,1 + a2,1 = 0

. . .

a1,n−1 + a2,n−1 = 0

The system is commonly solved using Gröbner basis methods.
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Gaudry and Diem (2008 and 2009)

Rewrite Sm in terms of the elementary symmetric polynomials

e1 =
∑

1≤i1≤m

Xi1 ,

e2 =
∑

1≤i1,i2≤m

Xi1Xi2 ,

. . .

em =
∏

1≤i≤m

Xi .
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PDP algebraic model

Choice of a factor base : an l-dimensional vector subspace V of F2n /F2. When l ∼ n
m the

system has a reasonable chance to have a solution.

X1 = a1,0 + . . .+ a1,l−1t
l−1

X2 = a2,0 + . . .+ a2,l−1t
l−1

. . .

Xm = am,0 + . . .+ am,l−1t
l−1

e1 = e1,0 + . . .+ e1,l−1t
l−1

e2 = e2,0 + . . .+ e2,2l−2t
2l−2

. . .

em = em,0 + . . .+ em,m(l−1)t
m(l−1)
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PDP algebraic model

• Equations defining symmetric polynomials

e1,0 = a1,0 + . . .+ am,0

e1,1 = a1,1 + . . .+ am,1

. . .

em,m(l−1) = a1,l · . . . · am,l .

• Equations derived from the Weil descent

The system is commonly solved using Gröbner basis methods.
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Summary

Today:

• Elliptic curves as finite groups

• Parallel Collision Search

• The Index Calculus attack
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