Cryptanalysis in elliptic curve cryptography

Cryptology - Autumn 2023

Monika Trimoska
December 4, 2023

Technische Universiteit Eindhoven

Elliptic curves

Let \mathbb{F}_{q} be a finite field. An elliptic curve over \mathbb{F}_{q} is a curve given by an equation of the form

$$
E: y^{2}=x^{3}+A x+B
$$

(short Weierstrass form)
with $A, B \in \mathbb{F}_{q}$.

- There is also a requirement that the discriminant $\Delta=4 A^{3}+27 B^{2}$ is nonzero.
- The set of points on E with the addition law form a group.
- The group law is constructed geometrically.

Adding points on an elliptic curve

- Draw a line through P and Q
\hookrightarrow The line intersects the curve E at a third point R
- Draw a vertical line through R \hookrightarrow The line intersects E in another point
- We define that point to be the sum of P and Q

Addition $P+Q$

[^0]Adding points on an elliptic curve

Doubling $P+P$

- Modify the first step : draw the tangent line to E at P

Neutral element \mathcal{O}

Inverse element $-P$

The addition law on E has the following properties:

- $P+\mathcal{O}=P$, for all $P \in E$
- Let $P \in E$. There is a point of E, denoted by $-P$, satisfying $P+(-P)=\mathcal{O}$
- $P+(Q+R)=(P+Q)+R$, for all $P, Q, R \in E$
- $P+Q=Q+P$, for all $P, Q \in E$.

Elliptic curves with points in \mathbb{F}_{p} are finite groups

- Closure
- Associativity
- Identity element
- Inverse element

We can write down explicitly the formulas for the addition law on E.

Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, then $P_{1}+P_{2}=\left(x_{3}, y_{3}\right)=\left(\lambda^{2}-x_{1}-x_{2}, \lambda\left(x_{3}-x_{1}\right)+y_{1}\right)$, where

$$
\lambda= \begin{cases}\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, & \text { when } P_{1} \neq P_{2} \\ \frac{3 x_{1}^{2}+a}{2 y_{1}}, & \text { when } P_{1}=P_{2}\end{cases}
$$

Elliptic Curve Discrete Logarithm

Problem

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given: points $P, Q \in E\left(\mathbb{F}_{q}\right)$
Find: an integer x such that $x P=Q$
!
We can use the hardness of ECDLP only because computing multiples is easy.
\hookrightarrow We can compute $m P$ in $\mathcal{O}(\log m)$ steps by the usual Double-and-Add Method.

- First write $m=m_{0}+m_{1} \cdot 2+m_{2} \cdot 2^{2}+\cdots+m_{r} \cdot 2^{r}$
- Then $m P$ can be computed as $m P=m_{0} P+m_{1} \cdot 2 P+m_{2} \cdot 2^{2} P+\cdots+m_{r} \cdot 2^{r} P$
- Requires r doublings (and sums)

$$
K_{a}=a b P=b a P=K_{b}
$$

Figure: Diffie-Hellman key exchange

ECDLP applications

- Diffie-Hellman key exchange
- EIGamal encryption and signatures
- Identification protocols
- Extension: Pairing-based crypto
- ECDSA used in all currently deployed cryptosystems:
mbedded SCTs

Signature Algorithm
Version
Timestamp
Log ID
Signature Algorithm
Version
Timestamp
Log ID EE:CD:D0:64:D5:DB:1A:CE:C5:5C:B7:9D:B4:CD:13:A2:32:87:46:7C:BC:EC:DE:... Signature Algorithm SHA-256 ECDSA

Version
Timestamp Tue, 15 Aug 2023 07:27:07 GMT

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given: points $P, Q \in E\left(\mathbb{F}_{q}\right)$
Find: an integer x such that $x P=Q$

Generic attacks

- Exhaustive Search
- Pollard's rho method
- Baby-step Giant-step
- Kangaroo
- Parallel Collision Search

Attacks on specific families

- MOV attack: using the Weil/Tate pairing
- Anomalous curves
- Index calculus

Parallel Collision Search

What is a collision? Why does a collision help us solve the (EC)DLP?
\hookrightarrow Having two different linear combinations of a random point $R \in E\left(\mathbb{F}_{q}\right)$

$$
\begin{aligned}
& R=a P+b Q \\
& R=a^{\prime} P+b^{\prime} Q,
\end{aligned}
$$

we infer that

$$
\begin{aligned}
& a P+b Q=a^{\prime} P+b^{\prime} Q \\
& \left(a-a^{\prime}\right) P=\left(b^{\prime}-b\right) \times P,
\end{aligned}
$$

and we compute

$$
x=\frac{a-a^{\prime}}{b^{\prime}-b}(\bmod N)
$$

Collision

Given a random map $f: S \rightarrow S$ on a finite set S of cardinality N, we call collision any pair R, R^{\prime} of elements in S such that $f(R)=f\left(R^{\prime}\right)$.

Pollard's Rho method

- Ideally, f is a random mapping.
- Expected number of steps until the collision is found:

$$
\sqrt{\frac{\pi N}{2}}
$$

$$
f(R)= \begin{cases}R+P & \text { if } R \in S_{1} \\ 2 R & \text { if } R \in S_{2} \\ R+Q & \text { if } R \in S_{3}\end{cases}
$$

```
Property of \(f\)
Input \((a P+b Q) \rightarrow\) Output \(\left(a^{\prime} P+b^{\prime} Q\right)\).
(If the input of \(f\) is linear combination of \(P\) and \(Q\), the output of \(f\) is also a linear combination of \(P\)
and \(Q\).)
```

Intuitively:

- Start from $R=a P+b Q$ for some random a and b
- Walk the random walk until we find the same point twice
\hookrightarrow To discover the collision, we need to store all * the points that we compute.

- Proposed by van Oorschot \& Wiener (1996).
- Distinguished points : a set of points having an easily testable property.
ex. The x-coordinate has 3 trailling zero bits: 10101101000.
- Only distinguished points are stored in memory.
- θ - the proportion of distinguished points in a set S.
- Complexity? How many points do we expect to compute (store) before a collision is found ? \hookrightarrow The Birthday Paradox

```
The birthday problem in collision search algorithms
We draw, randomly, elements from a set of size \(N\).
How many times do we expect to draw an element before we get the same
element twice?
```

\hookrightarrow About a square root of the total number of elements.

Complexity of the Parallel Collision Search

The expected number of distinguished points calculated before a collision is found

$$
E(X)=\sqrt{\frac{\pi N}{2}}
$$

Time complexity (for L threads)

$$
\mathcal{O}\left(\frac{1}{L} \sqrt{\frac{\pi N}{2}}\right)
$$

Memory complexity

$$
\mathcal{O}\left(\theta \sqrt{\frac{\pi N}{2}}\right)
$$

- Achieving perfect parallelization
- Shared memory VS Client-server setting
- Storage and lookup

Index Calculus

- Originally, a method for computing discrete logarithms in the multiplicative group of a finite field.
- Core ideas can be traced back to computation methods for discrete logs from the 19th century.
- Subexponential in $(\mathbb{Z} / p \mathbb{Z})^{*}$
- Core observations:
- Any natural number can be factored into prime numbers.
- As with the ordinary logarithm, there is a link between the multiplication of natural numbers and the addition of discrete logarithms

$$
\log \left(q_{1} \cdots \cdot q_{n}\right)=\log \left(q_{1}\right)+\cdots+\log \left(q_{n}\right)(\bmod p-1)
$$

$$
\begin{aligned}
& 28=2^{\times}(\bmod 47), x=? \\
& \text { Let } \mathcal{F}=\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}=\{2,3,5,7\} \text { be a factor base }
\end{aligned}
$$

> | Relation search phase |
| :--- |
| Find relations of the form $\prod_{j=1}^{4} R_{j}^{r_{j}} \equiv 2^{r} \bmod p$ |

$2^{1} \equiv 2$	$(\bmod 47)$
$2^{7} \equiv 34=2 \cdot 17$	$(\bmod 47)$
$2^{8} \equiv 21=3 \cdot 7$	$(\bmod 47)$
$2^{12} \equiv 7$	$(\bmod 47)$
$2^{18} \equiv 25=5^{2}$	$(\bmod 47)$

$$
\begin{aligned}
& 28=2^{x}(\bmod 47), x=? \\
& \text { Let } \mathcal{F}=\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}=\{2,3,5,7\} \text { be a factor base }
\end{aligned}
$$

Relation search phase

Find relations of the form $\prod_{j=1}^{4} R_{j}^{r_{j}} \equiv 2^{r} \bmod p$

$2^{1} \equiv 2$	$(\bmod 47)$
$2^{7} \equiv 34=2 \cdot 17$	$(\bmod 47)$
$2^{8} \equiv 21=3 \cdot 7$	$(\bmod 47)$
$2^{12} \equiv 7$	$(\bmod 47)$
$2^{18} \equiv 25=5^{2}$	$(\bmod 47)$

$$
\begin{aligned}
& 28=2^{x}(\bmod 47), x=? \\
& \text { Let } \mathcal{F}=\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}=\{2,3,5,7\} \text { be a factor base }
\end{aligned}
$$

Relation search phase

Find relations of the form $\prod_{j=1}^{4} R_{j}^{r_{j}} \equiv 2^{r} \bmod p$

$2^{1} \equiv 2$	$(\bmod 47)$
$2^{7} \equiv 34=2 \cdot 17$	$(\bmod 47)$
$2^{8} \equiv 21=3 \cdot 7$	$(\bmod 47)$
$2^{12} \equiv 7$	$(\bmod 47)$
$2^{18} \equiv 25=5^{2}$	$(\bmod 47)$

$$
\begin{aligned}
& 28=2^{x}(\bmod 47), x=? \\
& \text { Let } \mathcal{F}=\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}=\{2,3,5,7\} \text { be a factor base }
\end{aligned}
$$

Relation search phase

Find relations of the form $\prod_{j=1}^{4} R_{j}^{r_{j}} \equiv 2^{r} \bmod p$

$2^{1} \equiv 2$	$(\bmod 47)$
$2^{7} \equiv 34=2 \cdot 17$	$(\bmod 47)$
$2^{8} \equiv 21=3 \cdot 7$	$(\bmod 47)$
$2^{12} \equiv 7$	$(\bmod 47)$
$2^{18} \equiv 25=5^{2}$	$(\bmod 47)$

$$
\begin{aligned}
& 28=2^{x}(\bmod 47), x=? \\
& \text { Let } \mathcal{F}=\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}=\{2,3,5,7\} \text { be a factor base }
\end{aligned}
$$

Relation search phase
 Find relations of the form $\prod_{j=1}^{4} R_{j}^{r_{j}} \equiv 2^{r} \bmod p$

$2^{1} \equiv 2$	$(\bmod 47)$
$2^{7} \equiv 34=2 \cdot 17$	$(\bmod 47)$
$2^{8} \equiv 21=3 \cdot 7$	$(\bmod 47)$
$2^{12} \equiv 7$	$(\bmod 47)$
$2^{18} \equiv 25=5^{2}$	$(\bmod 47)$

2	3	5	7	
1	0	0	0	1
0	1	0	1	8
0	0	0	1	12
0	0	2	0	18

$$
\begin{aligned}
& 28=2^{x}(\bmod 47), x=? \\
& \text { Let } \mathcal{F}=\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}=\{2,3,5,7\} \text { be a factor base }
\end{aligned}
$$

Relation search phase

Find relations of the form $\prod_{j=1}^{4} R_{j}^{r_{j}} \equiv 2^{r} \bmod p$

$2^{1} \equiv 2$	$(\bmod 47)$
$2^{7} \equiv 34=2 \cdot 17$	$(\bmod 47)$
$2^{8} \equiv 21=3 \cdot 7$	$(\bmod 47)$
$2^{12} \equiv 7$	$(\bmod 47)$
$2^{18} \equiv 25=5^{2}$	$(\bmod 47)$

2	3	5	7	
1	0	0	0	1
0	1	0	1	8
0	0	0	1	12
0	0	2	0	18

$$
\begin{aligned}
& 28=2^{x}(\bmod 47), x=? \\
& \text { Let } \mathcal{F}=\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}=\{2,3,5,7\} \text { be a factor base }
\end{aligned}
$$

Relation search phase

Find relations of the form $\prod_{j=1}^{4} R_{j}^{r_{j}} \equiv 2^{r} \bmod p$

$2^{1} \equiv 2$	$(\bmod 47)$
$2^{7} \equiv 34=2 \cdot 17$	$(\bmod 47)$
$2^{8} \equiv 21=3 \cdot 7$	$(\bmod 47)$
$2^{12} \equiv 7$	$(\bmod 47)$
$2^{18} \equiv 25=5^{2}$	$(\bmod 47)$

2	3	5	7	
1	0	0	0	1
0	1	0	1	8
0	0	0	1	12
0	0	2	0	18

$$
\begin{aligned}
& 28=2^{\times}(\bmod 47), x=? \\
& \text { Let } \mathcal{F}=\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}=\{2,3,5,7\} \text { be a factor base }
\end{aligned}
$$

Relation search phase

Find relations of the form $\prod_{j=1}^{4} R_{j}^{r_{j}} \equiv 2^{r} \bmod p$

$2^{1} \equiv 2$	$(\bmod 47)$
$2^{7} \equiv 34=2 \cdot 17$	$(\bmod 47)$
$2^{8} \equiv 21=3 \cdot 7$	$(\bmod 47)$
$2^{12} \equiv 7$	$(\bmod 47)$
$2^{18} \equiv 25=5^{2}$	$(\bmod 47)$

2	3	5	7	
1	0	0	0	1
0	1	0	1	8
0	0	0	1	12
0	0	2	0	18

$$
\begin{aligned}
& 28=2^{x}(\bmod 47), x=? \\
& \text { Let } \mathcal{F}=\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}=\{2,3,5,7\} \text { be a factor base }
\end{aligned}
$$

Relation search phase

Find relations of the form $\prod_{j=1}^{4} R_{j}^{r_{j}} \equiv 2^{r} \bmod p$

$2^{1} \equiv 2$	$(\bmod 47)$
$2^{7} \equiv 34=2 \cdot 17$	$(\bmod 47)$
$2^{8} \equiv 21=3 \cdot 7$	$(\bmod 47)$
$2^{12} \equiv 7$	$(\bmod 47)$
$2^{18} \equiv 25=5^{2}$	$(\bmod 47)$

2	3	5	7	
1	0	0	0	1
0	1	0	1	8
0	0	0	1	12
0	0	2	0	18

$$
\begin{aligned}
& 28=2^{\times}(\bmod 47), x=? \\
& \text { Let } \mathcal{F}=\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}=\{2,3,5,7\} \text { be a factor base }
\end{aligned}
$$

```
Linear algebra phase
```


$$
\begin{aligned}
& 28=2^{\times}(\bmod 47), x=? \\
& \text { Let } \mathcal{F}=\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}=\{2,3,5,7\} \text { be a factor base }
\end{aligned}
$$

```
Linear algebra phase
```


$$
28=2^{x}(\bmod 47), x=?
$$

Let $\mathcal{F}=\left\{R_{1}, R_{2}, R_{3}, R_{4}\right\}=\{2,3,5,7\}$ be a factor base

Infer: $\log _{2} 2=1, \log _{2} 3=42, \log _{2} 5=9, \log _{2} 7=12$
$\log _{2} 28=\log _{2}\left(2^{2} \cdot 7\right)=2 \log _{2} 2+\log _{2} 7=14$

Algorithm summary

Input: a finite cyclic group $(G,+)$ and two elements $g, h \in G$
Output: $x \in \mathbb{Z}$ such that $h=x \cdot g$
(1) Finding an appropriate factor base $\mathcal{B}=\left\{g_{1}, \ldots, g_{k}\right\}$, such that $\mathcal{B} \subseteq G$
(2) Relation search phase: find relations of the form

$$
\left[a_{i}\right] g+\left[b_{i}\right] h=\sum_{j=1}^{n}\left[c_{i j}\right] g_{j}
$$

for random integers a_{i}, b_{i}.
(3) Linear algebra phase: having matrices $A=\left(a_{i} b_{i}\right)$ and $M=\left(c_{i j}\right)$, find a kernel vector $v=\left(v_{1} \ldots v_{k}\right)$ of the matrix M. Compute solution :

$$
x=-\left(\sum_{i} a_{i} v_{i}\right) /\left(\sum_{i} b_{i} v_{i}\right)
$$

- $\log \left(P_{1} \cdot \ldots \cdot P_{n}\right)=\log \left(P_{1}\right)+\cdots+\log \left(P_{n}\right)$
- "Prime" points ?
- Point decomposition ?
\hookrightarrow The index calculus attack can be applied for elliptic curves over extension fields.

Let $\mathbb{F}_{2^{n}}$ be a finite field and E be an elliptic curve defined by

$$
E: y^{2}+x y=x^{3}+a x^{2}+b
$$

with $a, b \in \mathbb{F}_{2^{n}}$.

Point decomposition phase of the Index calculus algorithm
Find $P_{1}, \ldots, P_{m-1} \in E\left(\mathbb{F}_{2^{n}}\right)$, such that

$$
P_{m}=P_{1}+\ldots+P_{m-1}
$$

Semaev's summation polynomials (2004)

*In the case of characteristic 2 and 3

$$
\begin{aligned}
& S_{2}\left(X_{1}, X_{2}\right)=X_{1}+X_{2} \\
& S_{3}\left(X_{1}, X_{2}, X_{3}\right)=X_{1}^{2} X_{2}^{2}+X_{1}^{2} X_{3}^{2}+X_{1} X_{2} X_{3}+X_{2}^{2} X_{3}^{2}+b
\end{aligned}
$$

For $m \geq 4$

$$
\begin{aligned}
& S_{m}\left(X_{1}, \ldots, X_{m}\right)= \\
& \operatorname{Res}_{X}\left(S_{m-k}\left(X_{1}, \ldots, X_{m-k-1}, X\right), S_{k+2}\left(X_{m-k}, \ldots, X_{m}, X\right)\right)
\end{aligned}
$$

$$
\text { For } P_{1}, \ldots, P_{m} \in E\left(\mathbb{F}_{2^{n}}\right)
$$

$$
P_{1}+\ldots+P_{m}=\mathcal{O} \Longleftrightarrow S_{m}\left(\mathbf{x}_{P_{1}}, \ldots, \mathbf{x}_{P_{m}}\right)=0
$$

Gaudry and Diem (2008 and 2009)

Rewrite the equation $S_{m}\left(X_{1}, \ldots, X_{m}\right)=0$ as a system of n equations over \mathbb{F}_{2}.
Example (trivial case of $m=2$):

$$
\begin{aligned}
& S_{2}\left(X_{1}, X_{2}\right)=0 \\
& X_{1}+X_{2}=0 \\
& \left(a_{1,0}+a_{1,1} t+\ldots+a_{1, n-1} t^{n-1}\right)+\left(a_{2,0}+a_{2,1} t+\ldots+a_{2, n-1} t^{n-1}\right)=0 \\
& \left(a_{1,0}+a_{2,0}\right)+\left(a_{1,1}+a_{2,1}\right) t+\ldots+\left(a_{1, n-1}+a_{2, n-1}\right) t^{n-1}=0
\end{aligned}
$$

$$
\left\{\begin{array}{l}
a_{1,0}+a_{2,0}=0 \\
a_{1,1}+a_{2,1}=0 \\
\ldots \\
a_{1, n-1}+a_{2, n-1}=0
\end{array}\right.
$$

The system is commonly solved using Gröbner basis methods.

Gaudry and Diem (2008 and 2009)

Rewrite S_{m} in terms of the elementary symmetric polynomials

$$
\begin{aligned}
\mathbf{e}_{1} & =\sum_{1 \leq i_{1} \leq m} X_{i_{1}} \\
\mathbf{e}_{2} & =\sum_{1 \leq i_{1}, i_{2} \leq m} X_{i_{1}} X_{i_{2}} \\
& \cdots \\
\mathbf{e}_{m} & =\prod_{1 \leq i \leq m} X_{i}
\end{aligned}
$$

Choice of a factor base : an I-dimensional vector subspace V of $\mathbb{F}_{2^{n}} / \mathbb{F}_{2}$. When $I \sim \frac{n}{m}$ the system has a reasonable chance to have a solution.

$$
\mathbf{e}_{1}=e_{1,0}+\ldots+e_{1, l-1} t^{l-1}
$$

$$
\begin{aligned}
& X_{1}=a_{1,0}+\ldots+a_{1, l-1} t^{I-1} \\
& X_{2}=a_{2,0}+\ldots+a_{2, l-1} t^{I-1} \\
& \ldots \\
& X_{m}=a_{m, 0}+\ldots+a_{m, l-1} t^{\prime-1}
\end{aligned}
$$

$$
\mathbf{e}_{2}=e_{2,0}+\ldots+e_{2,2 l-2} t^{2 l-2}
$$

$$
\mathbf{e}_{m}=e_{m, 0}+\ldots+e_{m, m(I-1)} t^{m(I-1)}
$$

- Equations defining symmetric polynomials

$$
\begin{aligned}
& e_{1,0}=a_{1,0}+\ldots+a_{m, 0} \\
& e_{1,1}=a_{1,1}+\ldots+a_{m, 1} \\
& \ldots \\
& e_{m, m(I-1)}=a_{1, l} \cdot \ldots \cdot a_{m, l}
\end{aligned}
$$

- Equations derived from the Weil descent

The system is commonly solved using Gröbner basis methods.

Summary

Today:

- Elliptic curves as finite groups
- Parallel Collision Search
- The Index Calculus attack

[^0]: ${ }^{1}$ Figures from the TikZ for Cryptographers library

