Lattice-based cryptography

Monika Trimoska

Selected Areas in Cryptology - Part 1

Spring, 2024

TU/e

Lattices

What is a lattice?

A lattice $L \subset \mathbb{R}^{n}$ is a discrete subgroup of \mathbb{R}^{n}.

What is a lattice?

What is a lattice?

A lattice $L \subset \mathbb{R}^{n}$ is a discrete subgroup of \mathbb{R}^{n}.
\longrightarrow dots: points on the lattice $\mathbf{c} \in L$.
for every $\mathbf{v} \in L$, there exists an open ball around \mathbf{v} that contains no other elements from L.

Codes and lattices

- Hard problems: finding low-weight codewords
- Hamming metric
- Working with k-dimensional codes of length n with k smaller than n
- Structured codes with a decoding algorithm

Codes and lattices

Codes and lattices

- Hard problems: finding low-weight codewords
- Hamming metric
- Working with k-dimensional codes of length n with k smaller than n
- Structured codes with a decoding algorithm

Codes and lattices

- Hard problems: finding low-weight codewords \longrightarrow Finding close lattice points
- Hamming metric
- Working with k-dimensional codes of length n with k smaller than n
- Structured codes with a decoding algorithm

Codes and lattices

- Hard problems: finding low-weight codewords \longrightarrow Finding close lattice points
- Hamming metric

- Structured codes with a decoding algorithm

Codes and lattices

- Hard problems: finding low-weight codewords \longrightarrow Finding close lattice points
- Hamming metric
- Working with k-dimensional codes of length n with k smaller than n
- Structured codes with a decoding algorithm

Codes and lattices

- Hard problems: finding low-weight codewords \longrightarrow Finding close lattice points
- Hamming metric \longrightarrow Euclidean metric
- Working with k-dimensional codes of length n with k smaller than n
- Structured codes with a decoding algorithm

Codes and lattices

- Hard problems: finding low-weight codewords \longrightarrow Finding close lattice points
- Hamming metric \longrightarrow Euclidean metric

- Structured codes with a decoding algorithm

Codes and lattices

- Hard problems: finding low-weight codewords \longrightarrow Finding close lattice points
- Hamming metric \longrightarrow Euclidean metric
- Working with k-dimensional codes of length n with k smaller than n
- Structured codes with a decoding algorithm

Codes and lattices

- Hard problems: finding low-weight codewords \longrightarrow Finding close lattice points
- Hamming metric \longrightarrow Euclidean metric
- Working with k-dimensional codes of length n with k smaller than n \qquad Working with full-rank lattices
- Structured codes with a decoding algorithm

Codes and lattices

- Hard problems: finding low-weight codewords \longrightarrow Finding close lattice points

- Structured codes with a decoding algorithm

Codes and lattices

- Hard problems: finding low-weight codewords \longrightarrow Finding close lattice points
- Hamming metric \longrightarrow Euclidean metric
- Working with k-dimensional codes of length n with k smaller than n \qquad Working with full-rank lattices
- Structured codes with a decoding algorithm

Codes and lattices

- Hard problems: finding low-weight codewords \longrightarrow Finding close lattice points
- Hamming metric \longrightarrow Euclidean metric
- Working with k-dimensional codes of length n with k smaller than n \qquad Working with full-rank lattices
- Structured codes with a decoding algorithm \longrightarrow Any lattice with a short basis

Basis representation

Lattice basis: $n \mathbb{R}$-linearly independent vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$

$$
L:=\left\{\sum_{i=1}^{n} a_{i} \mathbf{b}_{i} \mid a_{i} \in \mathbb{Z}\right\}
$$

Basis representation

Basis representation

$$
\begin{aligned}
& \text { Lattice basis: } n \mathbb{R} \text {-linearly independent vectors } \mathbf{b}_{1}, \ldots, \mathbf{b}_{n} \\
& \qquad L:=\left\{\sum_{i=1}^{n} a_{i} \mathbf{b}_{i} \mid a_{i} \in \mathbb{Z}\right\} \\
& \mathbf{B}=\binom{\mathbf{b}_{1}}{\mathbf{b}_{2}}=\left(\begin{array}{ll}
4 & 0 \\
3 & 5
\end{array}\right) \\
& \mathbf{v}_{1}=2 \mathbf{b}_{1}+\mathbf{b}_{2} \text { is a lattice vector }
\end{aligned}
$$

Basis representation

Lattice basis: $n \mathbb{R}$-linearly independent vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$

$$
L:=\left\{\sum_{i=1}^{n} a_{i} \mathbf{b}_{i} \mid a_{i} \in \mathbb{Z}\right\}
$$

$$
\mathbf{B}=\binom{\mathbf{b}_{1}}{\mathbf{b}_{2}}=\left(\begin{array}{ll}
4 & 0 \\
3 & 5
\end{array}\right)
$$

$\longrightarrow \mathbf{v}_{1}=2 \mathbf{b}_{1}+\mathbf{b}_{2}$ is a lattice vector
$\longrightarrow \mathbf{v}_{2}=1.5 \mathbf{b}_{1}-0.5 \mathbf{b}_{2}$ is not a lattice vector

Basis representation

Basis representation

Another basis:

$$
\mathbf{B}^{\prime}=\mathbf{U} \cdot \mathbf{B}
$$

with $\xrightarrow{\square} \in \mathrm{GL}_{n}(\mathbb{Z}), ~ \operatorname{det}(\mathbf{U})= \pm 1$.

The Euclidean metric

The Euclidean norm

$$
\begin{aligned}
& \bullet \bullet \bullet \quad \bullet \quad \bullet\left(v_{1}, \ldots, v_{n}\right) \|=\sqrt{v_{1}^{2}+\ldots+v_{n}^{2}} \\
& \longrightarrow \text { The Euclidean distance between } \mathbf{v}_{1} \text { and } \mathbf{v}_{2}
\end{aligned}
$$

The first minimum

\bigcirc
-
\bigcirc

,
-
$-$

- -
-

The fundamental parallelepiped

The fundamental parallelepiped

The fundamental parallelepiped

Hard problems

Shortest vector problem

Shortest vector problem

Closest vector problem

Closest vector problem

Hardness in practice

In practice:

- $\boldsymbol{n}=2 \rightsquigarrow$ easy, very efficient in practice
- up to $\boldsymbol{n}=\mathbf{6 0}$ or $\boldsymbol{n}=\mathbf{8 0} \leadsto$ a few minutes on a personal laptop
- up to $\boldsymbol{n}=180 \rightsquigarrow$ few weeks on a big computer with good code
- from $n=400$ to $n=1000 \rightsquigarrow$ cryptography

Good basis VS bad basis

Lagrange-Gauss lattice reduction

In dimension 2 , takes as input an arbitrary basis $\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}$ of a lattice L and outputs a 'best' basis $\mathbf{b}_{1}, \mathbf{b}_{2}$.

Lagrange-Gauss lattice reduction

In dimension 2, takes as input an arbitrary basis $\mathbf{b}_{1}^{\prime}, \mathbf{\mathbf { b } _ { 2 } ^ { \prime }}$ of a lattice L and outputs a 'best' basis $\mathbf{b}_{1}, \mathbf{b}_{2}$.

Do

- Swap: If $\left\|\mathbf{b}_{1}\right\|>\left\|\mathbf{b}_{2}\right\|$, then swap \mathbf{b}_{1} and \mathbf{b}_{2}.
- Reduce: While $\left|\left|\mathbf{b}_{1} \pm \mathbf{b}_{2}\right|\right|<\| \mathbf{b}_{2}| |$, replace $\mathbf{b}_{2} \leftarrow \mathbf{b}_{2} \pm \mathbf{b}_{1}$.

Until no progress is made from an iteration in the loop

Lagrange-Gauss lattice reduction

In dimension 2, takes as input an arbitrary basis $\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}$ of a lattice L and outputs a 'best' basis $\mathbf{b}_{1}, \mathbf{b}_{2}$.

Do

- Swap: If $\left\|\mathbf{b}_{1}| |>\right\| \mathbf{b}_{2} \|$, then swap \mathbf{b}_{1} and \mathbf{b}_{2}.
- Reduce: While $\left|\left|\mathbf{b}_{1} \pm \mathbf{b}_{2}\right|\right|<\| \mathbf{b}_{2}| |$, replace $\mathbf{b}_{2} \leftarrow \mathbf{b}_{2} \pm \mathbf{b}_{1}$.

Until no progress is made from an iteration in the loop

Assignment exercise: iterate algorithm for $\mathbf{b}_{1}=\binom{144}{0}, \mathbf{b}_{2}=\binom{89}{1}$.

Basis reduction algorithms

- Lagrange-Gauss reduction (in two dimensions)
- LLL
- BKZ
- Enumeration
- Sieving

Cryptographic constructions

Keygen

Solving the hard problems (SVP \& CVP) with a good basis is easy and solving them with a bad basis is hard.

Keygen

Solving the hard problems (SVP \& CVP) with a good basis is easy and solving them with a bad basis is hard.
\longrightarrow Secret key: a good basis
Public key: a bad basis
Gives rise to assumptions like
NTRO, Sis, Lw

The GGH encryption scheme

The GGH signature scheme

Learning a parallelepiped:

\square
0^{\bullet}

Learning a parallelepiped:

Learning a parallelepiped:

FALCON

\longrightarrow Chosen for standardisation by NIST (alongside CRYSTALS-Dilithium and SPHINCS+).

The hash-and-sign method

Solving approxCVP randomly
(sampling $\mathbf{s} \in L$ close to \mathbf{t} but not closest)

NTRU lattices

Assignment ex 1.
\rightarrow You should obtain

$$
b_{n}=(8,-8), b_{2}=(13,5)
$$

Toy example GGH encryption (assignment ex. 2)

$$
\begin{aligned}
& B=\left(\begin{array}{l}
4 \\
3 \\
5
\end{array}\right) \quad R=\left(\begin{array}{ll}
7 & 5 \\
6 & 10
\end{array}\right) \\
& m=(1,1) \\
& \text { Encrget: } \\
& =m R=(1.1)\left(\begin{array}{ll}
7 & 5 \\
6 & 10
\end{array}\right)=(13,15) \\
& \text { let } e=(0.1,-0.3) \\
& C=v+e=(13.1,14.7)
\end{aligned}
$$

Decrypt:

$$
\begin{aligned}
& y P^{\top}: \\
& \left.V^{\prime}=L C B^{-1}\right] B=(1,3) B=(13,15) \\
& m^{\prime}=V^{\prime} R^{-1}=(15,15) R^{-1}=(1,1)
\end{aligned}
$$

Toy example GGH signature (assignment ex. 2)

$$
B=\left(\begin{array}{ll}
4 & 0 \\
3 & 5
\end{array}\right) \quad R=\left(\begin{array}{ll}
7 & 5 \\
6 & 10
\end{array}\right)
$$

Sign:

$$
\begin{aligned}
& \text { Sign: } V=H(m)=(-9.5,11) \\
& S\left.=L V B^{-1} T B=L(-4.003,2.2)\right] B=(-4,2) B= \\
& \text { Verify: } \\
& \quad V^{\prime}=(-10,10)
\end{aligned}
$$

1) S lies on the lattice:

$$
\begin{aligned}
& \left(a_{1}, a_{2}\right) R=5 \\
& \left(a_{1}, a_{2}\right)\left(\begin{array}{ll}
7 & 5 \\
6 & 10
\end{array}\right)=(-10,10) \\
& a_{1}=-4, \\
& a_{2}=3
\end{aligned}
$$

2) $\|S-v\|=1.112 l_{1}(L)=2$
