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What is a lattice?

A lattice  is a discrete subgroup of .L ⊂ ℝn ℝn

dots: points on the lattice .c ∈ L

for every , there exists 
an open ball around  that 
contains no other elements 
from .

v ∈ L
v

L
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Codes and lattices

‣ Hard problems: finding low-weight codewords

‣ Hamming metric

‣ Working with -dimensional codes of length  with  smaller than  k n k n

‣ Structured codes with a decoding algorithm

Finding close lattice points 

Euclidean metric

Working with full-rank lattices

Any lattice with a short basis
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Basis representation

Lattice basis:  -linearly independent vectors n ℝ b1, …, bn

L := {
n

∑
i=1

aibi |ai ∈ ℤ} rank 

B = (b1

b2) = (4 0
3 5)

 is a lattice vectorv1 = 2b1 + b2

 is not a lattice vectorv2 = 1.5b1 − 0.5b2

Another basis:

B′ = U ⋅ B

with , . U ∈ GLn(ℤ) det(U) = ± 1

infinitely many bases 
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The Euclidean metric

The Euclidean norm

| | (v1, …, vn) | | = v2
1 + … + v2

n

The Euclidean distance between  and v1 v2

| | (v1 − v1) | |
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The first minimum

The first minimum of a lattice  is defined as the 
minimal norm of a nonzero lattice vector.

L

λ1(L) = min
v∈L∖{0}

| |v | |
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The fundamental parallelepiped
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The fundamental parallelepiped

𝒫(B) = [0,1)n ⋅ B

Volume of a lattice

vol(L) = vol(𝒫(B)) = |det(B) |
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Shortest vector problem
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Question: Find a shortest vector .
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v ∈ L

The Shortest Vector Problem (SVP)
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Shortest vector problem

Input: an arbitrary basis  of a lattice L. 
Question: Find a shortest vector .

B
v ∈ L

The Shortest Vector Problem (SVP)

| |v | | = λ1(L)
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Closest vector problem

Input: an arbitrary basis  of a lattice L and 
a target vector . 
Question: Find a lattice vector  that is 
closest to .

B
t ∈ ℝn

v ∈ L
t

The Closest Vector Problem (CVP)
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Closest vector problem

Input: an arbitrary basis  of a lattice L and 
a target vector . 
Question: Find a lattice vector  that is 
closest to .

B
t ∈ ℝn

v ∈ L
t

The Closest Vector Problem (CVP)

| | t − v | | = dist(L, t) =
1
2

λ1(L)
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Hardness in practice

©vanWoerden

https://pqc-spring-school.nl/wp-content/uploads/2024/03/Wessel-lattice-based.pdf
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Good basis VS bad basis

0 0

CVP input t = (1,11)

Hard problem

Good basis Bad basis

 (λ1, λ2) (4 0
3 5) = (1,11)

   t = − 1.4 b1+2.2 b2

 c = − 1b1+2b2

rounding

✓ 

 (λ1, λ2) (7 5
6 10) = (1,11)

   t = − 1.4 b′ 1+1.8 b′ 2

 c = − 1b′ 1+2b′ 2

rounding

✘
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Lagrange-Gauss lattice reduction

In dimension 2, takes as input an arbitrary basis  of a lattice  and outputs a ‘best’ basis . b′ 1, b′ 2 L b1, b2

Do

Until no progress is made from an iteration in the loop

‣ Swap: If , then swap  and .| |b1 | | > | |b2 | | b1 b2

‣ Reduce: While , replace .| |b1 ± b2 | | < | |b2 | | b2 ← b2 ± b1

Assignment exercise: iterate algorithm for , .b1 = (144
0 ) b2 = (89

1 )
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Basis reduction algorithms

‣ Lagrange-Gauss reduction (in two dimensions)

‣ LLL

‣ BKZ

‣ Enumeration

‣ Sieving



Cryptographic constructions
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Keygen

Solving the hard problems (SVP & CVP) with a good basis is easy and solving them with a 
bad basis is hard.
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Keygen

Solving the hard problems (SVP & CVP) with a good basis is easy and solving them with a 
bad basis is hard.

Secret key: a good basis

Public key: a bad basis
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The GGH encryption scheme

Encryption Decryption

Alice Bob

B B

B = (
b1…
bn)R = (

r1…
rn)

Compute:
•  (encode message)

•
•

m ← m
v = mR
c = v + e

mm

Compute:
•
•
•  (decode message)

v′ = ⌊cB−1⌉B
m′ = v′ R−1

m ← m

c
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A A
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Alice Bob
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B = (
b1…
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r1…
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Compute:
•  (hash message)

•
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•  
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Learning a parallelepiped:

Repeat

‣ Ask for a signature  on .s m

‣ Plot .H(m) − s

From the shape of the parallelepiped, 
we can recover a short basis.
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FALCON

Chosen for standardisation by NIST (alongside CRYSTALS-Dilithium and SPHINCS+).

The hash-and-sign method

Solving approxCVP randomly  
(sampling  close to  but not closest)s ∈ L t

NTRU lattices

+

+
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