Isogeny-based cryptography

Monika Trimoska

Selected Areas in Cryptology - Part 1

Spring, 2024

TU/e

Elliptic curves

©o\{

What is an elliptic curve?

An elliptic curve is an algebraic curve that admits an affine equation of the form

$$
\begin{gathered}
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
\quad \text { (general form of a Weierstrass curve) }
\end{gathered}
$$

with $a_{i} \in k$, where k is the field where the point is defined.

What is an elliptic curve?

An elliptic curve is an algebraic curve that admits an affine equation of the form

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

(general form of a Weierstrass curve)
with $a_{i} \in k$, where k is the field where the point is defined.

Example. $y^{2}=x^{3}-x+1$

y

What is an elliptic curve?

An elliptic curve is an algebraic curve that admits an affine equation of the form

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

(general form of a Weierstrass curve)
with $a_{i} \in k$, where k is the field where the point is defined.

Example. $y^{2}=x^{3}-x+1$
\longrightarrow A point on E means that the point (x, y) satisfies the curve equation.

Elliptic curves over \mathbb{F}_{q}

In cryptography, we use elliptic curves over finite fields $\mathbb{F}_{q^{\prime}} q=p^{k}$ (but we draw the figures over \mathbb{R} because it's nicer).

Elliptic curves over \mathbb{F}_{q}

In cryptography, we use elliptic curves over finite fields $\mathbb{F}_{q^{\prime}} q=p^{k}$ (but we draw the figures over \mathbb{R} because it's nicer).
\longrightarrow We denote by $E(k)$ the set of k-rational points on E.
defined over k

Elliptic curves over \mathbb{F}_{q}

In cryptography, we use elliptic curves over finite fields $\mathbb{F}_{q^{\prime}} q=p^{k}$ (but we draw the figures over \mathbb{R} because it's nicer).
\longrightarrow We denote by $E(k)$ the set of k-rational points on E.
defined over k

Elliptic curves in cryptography

A curve is

Elliptic curves in cryptography

A curve is

- non-singular (or smooth) if it does not have a singular point.

Elliptic curves in cryptography

A curve is

- non-singular (or smooth) if it does not have a singular point.

> Jacobi criterion: a point on E is singular if (x, y) also satisfies the two partial derivatives $2 y+a_{1} x+a_{3}=0$ and $a_{1} y=3 x^{2}+2 a_{2} x+a_{4}$.

Elliptic curves in cryptography

A curve is

- non-singular (or smooth) if it does not have a singular point.

```
\longrightarrow Jacobi criterion: a point on E is singular if (x,y)
also satisfies the two partial derivatives
2y+\mp@subsup{a}{1}{}x+\mp@subsup{a}{3}{}=0\mathrm{ and }\mp@subsup{a}{1}{}y=3\mp@subsup{x}{}{2}+2\mp@subsup{a}{2}{}x+\mp@subsup{a}{4}{}.
```

- supersingular (also non-singular) if and only if $\# E\left(\mathbb{F}_{p}\right)=p+1$ (for $\left.p>3\right)$.

Elliptic curves in cryptography

A curve is

- non-singular (or smooth) if it does not have a singular point.

- supersingular (also non-singular) if and only if $\# E\left(\mathbb{F}_{p}\right)=p+1$ (for $p>3$).

equivalently: iff $E[p]=\{\infty\}$
$\longrightarrow E[n]=\left\{P \in E\left(\overline{\mathbb{F}_{p}}\right) \mid n P=\infty\right\}$ (the n-torsion group)

Elliptic curves in cryptography

A curve is

- non-singular (or smooth) if it does not have a singular point.

> Jacobi criterion: a point on E is singular if (x, y) also satisfies the two partial derivatives $2 y+a_{1} x+a_{3}=0$ and $a_{1} y=3 x^{2}+2 a_{2} x+a_{4}$.

- supersingular (also non-singular) if and only if $\# E\left(\mathbb{F}_{p}\right)=p+1$ (for $p>3$).

equivalently: ff $E[p]=\{\infty\}$
$\longrightarrow E[n]=\left\{P \in E\left(\overline{\mathbb{F}_{p}}\right) \mid n P=\infty\right\}$ (the n-torsion group)

[^0]
More on elliptic curves

- Short Weierstrass form

$$
y^{2}=x^{3}+c_{4} x+c_{6}
$$

\longrightarrow The curve is non-singular if the discriminant $\Delta=4 c_{4}^{3}+27 c_{6}^{2}$ is nonzero.

More on elliptic curves

- Short Weierstrass form

$$
y^{2}=x^{3}+c_{4} x+c_{6}
$$

\longrightarrow The curve is non-singular if the discriminant $\Delta=4 c_{4}^{3}+27 c_{6}^{2}$ is nonzero.

- The set of points on E with the addition law form a group.

More on elliptic curves

- Short Weierstrass form

$$
y^{2}=x^{3}+c_{4} x+c_{6}
$$

\longrightarrow The curve is non-singular if the discriminant $\Delta=4 c_{4}^{3}+27 c_{6}^{2}$ is nonzero.

- The set of points on E with the addition law form a group.
- The group law is constructed geometrically.

The geometry of elliptic curves

Adding points on an elliptic curve

[^1]
The geometry of elliptic curves

Adding points on an elliptic curve

©Eichlseder

- Draw a line through P and Q.
\hookrightarrow The line intersects the curve E at a third point R.

The geometry of elliptic curves

Adding points on an elliptic curve

©Eichlseder
Addition $P+Q$

- Draw a line through P and Q.
\hookrightarrow The line intersects the curve E at a third point R.
- Draw a vertical line through R.
\hookrightarrow The line intersects E in another point.

The geometry of elliptic curves

Adding points on an elliptic curve

©Eichlseder
Addition $P+Q$

- Draw a line through P and Q.
\hookrightarrow The line intersects the curve E at a third point R.
- Draw a vertical line through R.
\hookrightarrow The line intersects E in another point.
- We define that point to be the sum of P and Q.

The geometry of elliptic curves

Adding points on an elliptic curve

Doubling $P+P$

- Modify the first step: draw the tangent line to E at P.

The geometry of elliptic curves

Adding points on an elliptic curve

Doubling $P+P$

Neutral element \mathcal{O}

- Modify the first step: draw the tangent line to E at P.

The geometry of elliptic curves

Adding points on an elliptic curve

Doubling $P+P$

Neutral element \mathcal{O}

Inverse element $-P$

- Modify the first step: draw the tangent line to E at P.

The algebra of elliptic curves

The addition law on E has the following properties:

- $P+\mathcal{O}=P$, for all $P \in E$
- Let $P \in E$. There is a point on E, denoted by $-P$, satisfying $P+(-P)=\mathcal{O}$.
- $P+(Q+R)=(P+Q)+R$, for all $P, Q, R \in E$
- $P+Q=Q+P$, for all $P, Q \in E$

The algebra of elliptic curves

The addition law on E has the following properties:

- $P+\mathcal{O}=P$, for all $P \in E$
- Let $P \in E$. There is a point on E, denoted by $-P$, satisfying $P+(-P)=\mathcal{O}$.
- $P+(Q+R)=(P+Q)+R$, for all $P, Q, R \in E$
- $P+Q=Q+P$, for all $P, Q \in E$

Elliptic curves with points in \mathbb{F}_{p} are finite abelian groups

- Closure
- Associativity
- Identity element
- Inverse element
- Commutativity

The algebra of elliptic curves

The addition law on E has the following properties:

- $P+\mathcal{O}=P$, for all $P \in E$
- Let $P \in E$. There is a point on E, denoted by $-P$, satisfying $P+(-P)=\mathcal{O}$.
- $P+(Q+R)=(P+Q)+R$, for all $P, Q, R \in E$
- $P+Q=Q+P$, for all $P, Q \in E$

Elliptic curves with points in \mathbb{F}_{p} are finite abelian groups

- Closure
- Associativity
- Identity element
- Inverse element
- Commutativity

The algebra of elliptic curves

The addition law on E has the following properties:

- $P+\mathcal{O}=P$, for all $P \in E$
- Let $P \in E$. There is a point on E, denoted by $-P$, satisfying $P+(-P)=\mathcal{O}$.
- $P+(Q+R)=(P+Q)+R$, for all $P, Q, R \in E$
- $P+Q=Q+P$, for all $P, Q \in E$

Elliptic curves with points in \mathbb{F}_{p} are finite abelian groups

- Closure
- Associativity
- Identity element
- Inverse element
- Commutativity

The algebra of elliptic curves

The addition law on E has the following properties:

- $P+\mathcal{O}=P$, for all $P \in E$
- Let $P \in E$. There is a point on E, denoted by $-P$, satisfying $P+(-P)=\mathcal{O}$.
- $P+(Q+R)=(P+Q)+R$, for all $P, Q, R \in E$
- $P+Q=Q+P$, for all $P, Q \in E$

Elliptic curves with points in \mathbb{F}_{p} are finite abelian groups

- Closure
- Associativity
- Identity element
- Inverse element
- Commutativity

The algebra of elliptic curves

The addition law on E has the following properties:

- $P+\mathcal{O}=P$, for all $P \in E$
- Let $P \in E$. There is a point on E, denoted by $-P$, satisfying $P+(-P)=\mathcal{O}$.
- $P+(Q+R)=(P+Q)+R$, for all $P, Q, R \in E$
- $P+Q=Q+P$, for all $P, Q \in E$

Elliptic curves with points in \mathbb{F}_{p} are finite abelian groups

- Closure
- Associativity
- Identity element
- Inverse element
- Commutativity

The algebra of elliptic curves

The addition law on E has the following properties:

- $P+\mathcal{O}=P$, for all $P \in E$
- Let $P \in E$. There is a point on E, denoted by $-P$, satisfying $P+(-P)=\mathcal{O}$.
- $P+(Q+R)=(P+Q)+R$, for all $P, Q, R \in E$
- $P+Q=Q+P$, for all $P, Q \in E$

Elliptic curves with points in \mathbb{F}_{p} are finite abelian groups

- Closure
- Associativity
- Identity element
- Inverse element
- Commutativity

The arithmetic of elliptic curves

We can write down explicitly the formulas for the addition law on E.

Let $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$,
then $P_{1}+P_{2}=\left(x_{3}, y_{3}\right)=\left(\lambda^{2}-x_{1}-x_{2}, \lambda\left(x_{3}-x_{1}\right)+y_{1}\right)$, where

$$
\lambda= \begin{cases}\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, & \text { when } P_{1} \neq P_{2} \\ \frac{3 x_{1}^{2}+a}{2 y_{1}}, & \text { when } P_{1}=P_{2}\end{cases}
$$

Elliptic curves in SageMath

```
Elliptic curves and the group law
    p=next_prime(2^8)
K=GF(p)
E=EllipticCurve(K, [0, 0, 0, -1, 1])
print(E)
print("Number of points on E:", E.order())
print("E is supersingular: ", E.order()==p+1)
P=E.random_point()
x=K.random_element()
Q=x*P
print("P: ", P, ", Q: ", Q)
print(P+Q == (x+1)*P)
0.0s
Elliptic Curve defined by y^2 = x^3 + 256*x + 1 over Finite Field of size 257
Number of points on E: 251
E is supersingular: False
P: (3 : 5 : 1) , Q: (48 : 158 : 1)
True
```


Building crypto from elliptic curves (not PQ)

${ }^{\alpha}$

Elliptic curve discrete logarithm problem

The ECDLP problem

Input: Two points $P, Q \in E\left(\mathbb{F}_{q}\right)$.
Question: Find an integer x such that $x P=Q$.

Elliptic curve discrete logarithm problem

The ECDLP problem

Input: Two points $P, Q \in E\left(\mathbb{F}_{q}\right)$.
Question: Find an integer x such that $x P=Q$.

We can use the hardness of ECDLP only because computing multiples is easy.

Elliptic curve discrete logarithm problem

The ECDLP problem

Input: Two points $P, Q \in E\left(\mathbb{F}_{q}\right)$.
Question: Find an integer x such that $x P=Q$.
!
We can use the hardness of ECDLP only because computing multiples is easy.

We can compute $m P$ in $\mathscr{O}(\log m)$ steps by the usual Double-and-Add Method.

Elliptic curve discrete logarithm problem

The ECDLP problem

Input: Two points $P, Q \in E\left(\mathbb{F}_{q}\right)$.
Question: Find an integer x such that $x P=Q$.

!

We can use the hardness of ECDLP only because computing multiples is easy.

We can compute $m P$ in $\mathscr{O}(\log m)$ steps by the usual Double-and-Add Method.

- First write $m=m_{0}+m_{1} \cdot 2+m_{2} \cdot 2^{2}+\ldots+m_{r} \cdot 2^{r}$.
- Then $m P$ can be computed as $m P=m_{0} P+m_{1} \cdot 2 P+m_{2} \cdot 2^{2} P+\ldots+m_{r} \cdot 2^{r} P$.
- Requires r doublings (and sums).

Diffie-Hellman key exchange

$$
K_{a}=a b P=b a P=K_{b}
$$

Isogenies

○ó

Isomorphisms

An isomorphism is a map between elliptic curves that is defined everywhere, ie., that is given by polynomials in x and y.

Isomorphisms

An isomorphism is a map between elliptic curves that is defined everywhere, i.e., that is given by polynomials in x and y.
it is a degree- 1 isogeny (will make sense on the next slide)
(can be viewed as a change of coordinates)

Isomorphisms

An isomorphism is a map between elliptic curves that is defined everywhere, i.e., that is given by polynomials in x and y.

```
\square}\mathrm{ it is a degree-1 isogeny (will make sense on the next slide)
(can be viewed as a change of coordinates)
```


Isogenies

An isogeny φ of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is

- given by rational functions
- that is a group homomorphism

Isogenies

Isogenies

An isogeny φ of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is

- given by rational functions
- that is a group homomorphism

Isogenies

An isogeny φ of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is

- given by rational functions
- that is a group homomorphism

\longrightarrow An isogeny is uniquely defined by its kernel: $\left\{P \in E \mid \varphi(P)=\mathcal{O}_{E^{\prime}}\right\}$.

Isogenies

An isogeny φ of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is

- given by rational functions
- that is a group homomorphism

\longrightarrow An isogeny is uniquely defined by its kernel: $\left\{P \in E \mid \varphi(P)=\mathcal{O}_{E^{\prime}}\right\}$.
\longrightarrow The degree of a (separable) isogeny is the size of its kernel.

Isogenies

Example.

$$
(x, y) \mapsto\left(\frac{x^{3}-4 x^{2}+30 x-12}{(x-2)^{2}}, \frac{x^{3}-6 x^{2}-14 x+35}{(x-2)^{3}} \cdot y\right)
$$

defines a degree-3 isogeny of the elliptic curves

$$
\left\{y^{2}=x^{3}+x\right\} \rightarrow\left\{y^{2}=x^{3}-3 x+3\right\}
$$

over \mathbb{F}_{71}. Its kernel is $\{(2,9),(2,-9), \mathcal{O}\}$.

Isogenies

Example.

$$
(x, y) \mapsto\left(\frac{x^{3}-4 x^{2}+30 x-12}{(x-2)^{2}}, \frac{x^{3}-6 x^{2}-14 x+35}{(x-2)^{3}} \cdot y\right)
$$

defines a degree-3 isogeny of the elliptic curves

$$
\left\{y^{2}=x^{3}+x\right\} \rightarrow\left\{y^{2}=x^{3}-3 x+3\right\}
$$

over \mathbb{F}_{71}. Its kernel is (2,9), (2, -9), $\left.\mathcal{O}\right\}$.

Isogenies

Example.

$$
(x, y) \mapsto\left(\frac{x^{3}-4 x^{2}+30 x-12}{(x-2)^{2}}, \frac{x^{3}-6 x^{2}-14 x+35}{(x-2)^{3}} \cdot y\right)
$$

defines a degree-3 isogeny of the elliptic curves

$$
\left\{y^{2}=x^{3}+x\right\} \rightarrow\left\{y^{2}=x^{3}-3 x+3\right\}
$$

over \mathbb{F}_{71}. Its kernel is $\left.(2,9),(2,-9), \mathcal{O}\right\}$.
ℓ-isogeny:

- $x \rightarrow \frac{f(x)}{g(x)}$, with $\operatorname{deg}(f)=\ell, \operatorname{deg}(g)=\ell-1$
- $y \rightarrow \ldots$

Computing isogenies

*We consider only supersingular curves from now on.
\longrightarrow Goal: Compute an ℓ-isogeny from E.

Computing isogenies

*We consider only supersingular curves from now on.
\longrightarrow Goal: Compute an ℓ-isogeny from E.

Computing isogenies

*We consider only supersingular curves from now on.
\longrightarrow Goal: Compute an ℓ-isogeny from E.

Obtain a kernel of an ℓ-isogeny

Compute an ℓ-isogeny

Computing isogenies

*We consider only supersingular curves from now on.
\longrightarrow Goal: Compute an ℓ-isogeny from E.

Obtain a subgroup of order ℓ
$\longrightarrow \quad$ Obtain a kernel of an ℓ-isogeny

Compute an ℓ-isogeny

Computing isogenies

*We consider only supersingular curves from now on.
\longrightarrow Goal: Compute an ℓ-isogeny from E.

Take the cyclic group generated by P

Obtain a subgroup of order ℓ

Obtain a kernel of an ℓ-isogeny

Compute an ℓ-isogeny

Computing isogenies

*We consider only supersingular curves from now on.
\longrightarrow Goal: Compute an ℓ-isogeny from E.

Find a point P on E of order ℓ
\longrightarrow
Take the cyclic group generated by P

Obtain a subgroup of order ℓ

Obtain a kernel of an ℓ-isogeny

Compute an ℓ-isogeny

Computing isogenies

*We consider only supersingular curves from now on.
\longrightarrow Goal: Compute an ℓ-isogeny from E.

Find a point P on E of order ℓ
\square
Take the cyclic group generated by P

Vélu's formulas

\longrightarrow For any finite subgroup G of E, there exists a unique (up to isomorphism) separable isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.

Vélu's formulas

\longrightarrow For any finite subgroup G of E, there exists a unique (up to isomorphism) separable isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.

Vélu's formulas

\longrightarrow For any finite subgroup G of E, there exists a unique (up to isomorphism) separable isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.

Composing isogenies

\longrightarrow Goal: Compute a d-isogeny from E.

Composing isogenies

\longrightarrow Goal: Compute a d-isogeny from E.

$$
\varphi, \operatorname{deg}(\varphi)=d
$$

$?$
$E \sim$

Composing isogenies

\longrightarrow Goal: Compute a d-isogeny from E.
$\varphi, \operatorname{deg}(\varphi)=d$
$E \sim$

Composing isogenies

\longrightarrow Goal: Compute a d-isogeny from E, with d a smooth integer $\left(d=\ell_{1}^{e_{1}} \cdot \ell_{2}^{e_{2}} \ldots \ell_{n}^{e_{n}}\right)$.

$$
\varphi, \operatorname{deg}(\varphi)=d
$$

$?$

Composing isogenies

\longrightarrow Goal: Compute a d-isogeny from E, with d a smooth integer $\left(d=\ell_{1}^{e_{1}} \cdot \ell_{2}^{e_{2}} \ldots \ell_{n}^{e_{n}}\right)$.

Isogenies in SageMath

```
Computing isogenies
    p=139
    A=0
    E=EllipticCurve(GF(p), [0, A, 0, 1, 0])
    assert E.order()==p+1 #check that it is a supersingular curve
    print("We can compute isogenies of the following degrees:", factor((p+1)/4))
    P=E.random_point()
    while P.order().is_prime() == False:
    P=E.random_point()
    print("We will compute an isogeny of degree", P.order())
    print(E.montgomery_model()) #needs Sage 10.3
    phi=E.isogeny(P)
    print(phi)
    E2=phi.codomain()
    print(E2.montgomery_model()) #needs Sage 10.3
We can compute isogenies of the following degrees: 5 * 7
We will compute an isogeny of degree
Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 139
Isogeny of degree 5 from Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 139 to Elliptic Curve defined by y^2 = x^3 + 72*x + 30 over Finite Field of size 139
Elliptic Curve defined by y^2 = x^3 + 126* x^2 + x over Finite Field of size 139
```


Endomorphism rings

Endomorphism rings

```
-- Dual isogeny
    - For isogeny }\varphi:E->\mp@subsup{E}{}{\prime}\mathrm{ there exists a unique dual isogeny }\hat{\varphi}:\mp@subsup{E}{}{\prime}->E
    - The composition \hat{\rho}\circ\varphi}\mathrm{ is the multiplication-by-d map on E and }\varphi\circ\hat{\varphi}\mathrm{ the multiplication-by-d map on E',
    where}d=\operatorname{deg}(\varphi)=\operatorname{deg}(\hat{\varphi})\mathrm{ .
```


Endomorphism rings

```
-- Dual isogeny
    - For isogeny \(\varphi: E \rightarrow E^{\prime}\) there exists a unique dual isogeny \(\hat{\varphi}: E^{\prime} \rightarrow E\).
    - The composition \(\hat{\varphi} \circ \varphi\) is the multiplication-by- \(d\) map on \(E\) and \(\varphi \circ \hat{\varphi}\) the multiplication-by- \(d\) map on \(E^{\prime}\),
        where \(d=\operatorname{deg}(\varphi)=\operatorname{deg}(\hat{\varphi})\).
```

- - The multiplication-by- d map
- The multiplication-by- d map $[d]: E \rightarrow E$ is a degree- d^{2} isogeny from E to E.

Endomorphism rings

```
「- Dual isogeny
    - For isogeny \(\varphi: E \rightarrow E^{\prime}\) there exists a unique dual isogeny \(\hat{\varphi}: E^{\prime} \rightarrow E\).
    - The composition \(\hat{\varphi} \circ \varphi\) is the multiplication-by- \(d\) map on \(E\) and \(\varphi \circ \hat{\varphi}\) the multiplication-by- \(d\) map on \(E^{\prime}\),
        where \(d=\operatorname{deg}(\varphi)=\operatorname{deg}(\hat{\varphi})\).
```

- - The multiplication-by- d map
 - The multiplication-by- d map $[d]: E \rightarrow E$ is a degree- d^{2} isogeny from E to E.
It is an endomorphism.

Endomorphism rings

```
-- Dual isogeny
    - For isogeny \(\varphi: E \rightarrow E^{\prime}\) there exists a unique dual isogeny \(\hat{\varphi}: E^{\prime} \rightarrow E\).
    - The composition \(\hat{\varphi} \circ \varphi\) is the multiplication-by- \(d\) map on \(E\) and \(\varphi \circ \hat{\varphi}\) the multiplication-by- \(d\) map on \(E^{\prime}\),
        where \(d=\operatorname{deg}(\varphi)=\operatorname{deg}(\hat{\varphi})\).
```


- The multiplication-by- d map

- The multiplication-by- d map $[d]: E \rightarrow E$ is a degree- d^{2} isogeny from E to E.
- Its kernel is $E[d] \cong \mathbb{Z} / d \times \mathbb{Z} / d$.

Endomorphism rings

```
-- Dual isogeny
    - For isogeny \(\varphi: E \rightarrow E^{\prime}\) there exists a unique dual isogeny \(\hat{\varphi}: E^{\prime} \rightarrow E\).
    - The composition \(\hat{\varphi} \circ \varphi\) is the multiplication-by- \(d\) map on \(E\) and \(\varphi \circ \hat{\varphi}\) the multiplication-by- \(d\) map on \(E^{\prime}\),
        where \(d=\operatorname{deg}(\varphi)=\operatorname{deg}(\hat{\varphi})\).
```


- The multiplication-by- d map

- The multiplication-by- d map $[d]: E \rightarrow E$ is a degree- d^{2} isogeny from E to E.
- Its kernel is $E[d] \cong \mathbb{Z} / d \times \mathbb{Z} / d$.

```
\(\longrightarrow\) It is an endomorphism.
```

An endomorphism is an isogeny from a curve E to itself.

Endomorphism rings

```
- - Dual isogeny
    - For isogeny \(\varphi: E \rightarrow E^{\prime}\) there exists a unique dual isogeny \(\hat{\varphi}: E^{\prime} \rightarrow E\).
    - The composition \(\hat{\rho} \circ \varphi\) is the multiplication-by- \(d\) map on \(E\) and \(\varphi \circ \hat{\varphi}\) the multiplication-by- \(d\) map on \(E^{\prime}\),
        where \(d=\operatorname{deg}(\varphi)=\operatorname{deg}(\hat{\varphi})\).
```


- The multiplication-by- d map

- The multiplication-by- d map $[d]: E \rightarrow E$ is a degree- d^{2} isogeny from E to E.
- Its kernel is $E[d] \cong \mathbb{Z} / d \times \mathbb{Z} / d$.

It is an endomorphism.
$\operatorname{End}(E)$

- An endomorphism is an isogeny from a curve E to itself.
- The set of endomorphisms forms a ring $\operatorname{End}(E)$ under + and 0 .

Hard problems and reductions

The isogeny path problem
Input: Two supersingular curves E and E^{\prime}.
Question: Find an isogeny φ from E to E^{\prime}.

Hard problems and reductions

The isogeny path problem
Input: Two supersingular curves E and E^{\prime}.
Question: Find an isogeny φ from E to E^{\prime}.

The EndRing problem

Input: A super singular curve E.
Question: Find a basis of $\operatorname{End}(E)$.

Hard problems and reductions

The isogeny path problem
Input: Two supersingular curves E and E^{\prime}.
Question: Find an isogeny φ from E to E^{\prime}.

The EndRing problem

Input: A super singular curve E.
Question: Find a basis of $\operatorname{End}(E)$.

Hard problems and reductions

The isogeny path problem
Input: Two supersingular curves E and E^{\prime}.
Question: Find an isogeny φ from E to E^{\prime}.

Tate's theorem: E and E^{\prime} are isogenous over \mathbb{F}_{p} if and only if $\# E\left(\mathbb{F}_{p}\right)=\# E^{\prime}\left(\mathbb{F}_{p}\right)$.

The EndRing problem

Input: A super singular curve E.
Question: Find a basis of $\operatorname{End}(E)$.

Hard problems and reductions

The isogeny path problem
Input: Two supersingular curves E and E^{\prime}.
Question: Find an isogeny φ from E to E^{\prime}. (when point counting is easy)

The EndRing problem

Input: A super singular curve E.
Question: Find a basis of $\operatorname{End}(E)$.

Isogeny graphs

- Vertices are \mathbb{F}_{p}-isomorphism classes of supersingular elliptic curves.
- Edges are prime-degree isogenies between them.

Cryptanalysis

(ECDLP and isogeny path finding)

○ó

Cryptanalysis

Generic attacks are all in $\tilde{O}\left(N^{\frac{1}{2}}\right)$, where N is the size of the search space.

Cryptanalysis

Generic attacks are all in $\tilde{O}\left(N^{\frac{1}{2}}\right)$, where N is the size of the search space.

\#E($\left.\mathbb{F}_{q}\right)$ (for ECDLP)

- Nb. of isogenies from E of the fixed degree (for fixed-degree isogeny path finding)
- etc.

Cryptanalysis

Generic attacks are all in $\tilde{O}\left(N^{\frac{1}{2}}\right)$, where N is the size of the search space.

\#E($\left.\mathbb{F}_{q}\right)$ (for ECDLP)
Nb. of isogenies from E of the fixed degree (for fixed-degree isogeny path finding)

- etc.
- Meet-in-the-middle
- Parallel Collision Search (vOW)
- Delfs-Galbraith

Meet-in-the-middle

Example. Goal: Find a 2^{e}-isogeny from E to E^{\prime}.
$2^{e / 2}$-isogeny

Meet-in-the-middle

Example. Goal: Find a 2^{e}-isogeny from E to E^{\prime}.

Meet-in-the-middle

Example. Goal: Find a 2^{e}-isogeny from E to E^{\prime}.

Meet-in-the-middle

Example. Goal: Find a 2^{e}-isogeny from E to E^{\prime}.

Meet-in-the-middle

Example. Goal: Find a 2^{e}-isogeny from E to E^{\prime}.

ζ
More details in the assignment.

Collision search

What is a collision? Why does a collision help us solve the (EC)DLP?

Collision search

What is a collision? Why does a collision help us solve the (EC)DLP?
\longrightarrow Having two different linear combinations of a random point $R \in E\left(\mathbb{F}_{q}\right)$

$$
\begin{gathered}
R=a P+b Q \\
R=a^{\prime} P+b^{\prime} Q
\end{gathered}
$$

Collision search

What is a collision? Why does a collision help us solve the (EC)DLP?

Having two different linear combinations of a random point $R \in E\left(\mathbb{F}_{q}\right)$

$$
\begin{gathered}
R=a P+b Q \\
R=a^{\prime} P+b^{\prime} Q
\end{gathered}
$$

we infer that

$$
\begin{aligned}
& a P+b Q=a^{\prime} P+b^{\prime} Q \\
& \left(a-a^{\prime}\right) P=\left(b^{\prime}-b\right) x P
\end{aligned}
$$

Collision search

What is a collision? Why does a collision help us solve the (EC)DLP?

Having two different linear combinations of a random point $R \in E\left(\mathbb{F}_{q}\right)$

$$
\begin{gathered}
R=a P+b Q \\
R=a^{\prime} P+b^{\prime} Q
\end{gathered}
$$

we infer that

$$
\begin{aligned}
& a P+b Q=a^{\prime} P+b^{\prime} Q \\
& \left(a-a^{\prime}\right) P=\left(b^{\prime}-b\right) x P
\end{aligned}
$$

and we compute

$$
x=\frac{a-a^{\prime}}{b^{\prime}-b}(\bmod N) .
$$

Collision search

-- Collision
Given a random $\operatorname{map} f: S \rightarrow S$ on a finite set S of cardinality N, we call collision any pair R, R^{\prime} of elements in S such that $f(R)=f\left(R^{\prime}\right)$.

Collision search

-- Collision
Given a random $\operatorname{map} f: S \rightarrow S$ on a finite set S of cardinality N, we call collision any pair R, R^{\prime} of elements in S such that $f(R)=f\left(R^{\prime}\right)$.

Pollard's Rho method

Collision search

-- Collision
Given a random $\operatorname{map} f: S \rightarrow S$ on a finite set S of cardinality N, we call collision any pair R, R^{\prime} of elements in S such that $f(R)=f\left(R^{\prime}\right)$.

Pollard's Rho method

- Ideally, f is a random mapping.

Collision search

-- Collision
Given a random $\operatorname{map} f: S \rightarrow S$ on a finite set S of cardinality N, we call collision any pair R, R^{\prime} of elements in S such that $f(R)=f\left(R^{\prime}\right)$.

Pollard's Rho method

- Ideally, f is a random mapping.
- Expected number of steps until the collision is found

$$
\sqrt{\frac{\pi N}{2}}
$$

Collision search

$$
f(R)= \begin{cases}R+P & \text { if } R \in S_{1} \\ 2 R & \text { if } R \in S_{2} \\ R+Q & \text { if } R \in S_{3},\end{cases}
$$

Collision search

$$
f(R)= \begin{cases}R+P & \text { if } R \in S_{1} \\ 2 R & \text { if } R \in S_{2} \\ R+Q & \text { if } R \in S_{3},\end{cases}
$$

r- Property of f
Input $(a P+b Q) \rightarrow$ Output $\left(a^{\prime} P+b^{\prime} Q\right)$.
(If the input of f is linear combination of P and Q, the output of f is also a linear combination of P and Q.)

Collision search

$$
f(R)= \begin{cases}R+P & \text { if } R \in S_{1} \\ 2 R & \text { if } R \in S_{2} \\ R+Q & \text { if } R \in S_{3},\end{cases}
$$

Intuitively:

- Start from $R=a P+b Q$ for some random a and b.
- Walk the random walk until we find the same point twice.
\hookrightarrow To discover the collision, we need to store all* the points that we compute.

Parallel Collision Search

- Proposed by van Oorschot \& Wiener (1996).

Parallel Collision Search

- Proposed by van Oorschot \& Wiener (1996).
- Distinguished points: a set of points having an easily testable property.
ex. The x-coordinate has 3 trailling zero bits: 10101101000.

Parallel Collision Search

- Proposed by van Oorschot \& Wiener (1996).
- Distinguished points: a set of points having an easily testable property.
ex. The x-coordinate has 3 trailling zero bits: 10101101000.
- Only distinguished points are stored in memory.

Parallel Collision Search

- Proposed by van Oorschot \& Wiener (1996).
- Distinguished points: a set of points having an easily testable property.
ex. The x-coordinate has 3 trailling zero bits: 10101101000.
- Only distinguished points are stored in memory.
- θ - the proportion of distinguished points in a set S.

Parallel Collision Search

- Proposed by van Oorschot \& Wiener (1996).
- Distinguished points: a set of points having an easily testable property.
ex. The x-coordinate has 3 trailling zero bits: 10101101000.
- Only distinguished points are stored in memory.
- θ - the proportion of distinguished points in a set S.
- Complexity ? How many points do we expect to compute (store) before a collision is found ?

Parallel Collision Search

- Proposed by van Oorschot \& Wiener (1996).
- Distinguished points: a set of points having an easily testable property.
ex. The x-coordinate has 3 trailling zero bits: 10101101000.
- Only distinguished points are stored in memory.
- θ - the proportion of distinguished points in a set S.
- Complexity ? How many points do we expect to compute (store) before a collision is found ?
\longrightarrow
The Birthday paradox
$\longrightarrow($ recall $) \sim \sqrt{N}$

PCS for isogenies

\longrightarrow Yes, but it becomes a multi-collision search (finding the golden collision).

Even less memory

\longrightarrow Delfs-Galbraith algorithm.

- Only for the isogeny setting.
- Negligible space requirements.

Building crypto from elliptic curves (not PQ)

${ }^{\alpha}$

Building crypto from elliptic curves isogenies (PQ)

CSIDH

○ó

DH key exchange on graphs

Imagine the dog graph

- Vertices are points on E.
- Edges are multiplication-by-i maps.

DH key exchange on isogeny graphs?

Isogeny graphs

- Vertices are isomorphism classes of supersingular elliptic curves.
- Edges are prime-degree isogenies between them.

DH key exchange on isogeny graphs?

Isogeny graphs

- Vertices are isomorphism classes of supersingular elliptic curves.
- Edges are prime-degree isogenies between them.

\longrightarrow Walking on the isogeny graph is not commutative (a priori).

DH key exchange on isogeny graphs?

Isogeny graphs

- Vertices are isomorphism classes of supersingular elliptic curves.
- Edges are prime-degree isogenies between them.

\longrightarrow Walking on the isogeny graph is not commutative (a priori).
\longrightarrow
Alice \& Bob do not end up on the same vertex (isomorphism class).

Commutative group action

[^2]
Commutative group action

```
Fundamental theorem of cyclic groups *additive notation.
.
Every subgroup of a cyclic group \(G=\langle P\rangle\) is cyclic.
Moreover, if \(\# G=N\), then the order of any subgroup of G is a divisor of \(N\), and,
for each positive divisor \(k\) of \(N\), the group \(G\) has exactly one subgroup of order \(k\) : namely, \(\langle[N / k] P\rangle\).
```

Supersingular curves and cyclic groups (recall)

- $E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z} /(p+1)$
- $E\left(\mathbb{F}_{p^{2}}\right) \cong \mathbb{Z} /(p+1) \times \mathbb{Z} /(p+1)$

Commutative group action

Fundamental theorem of cyclic groups *additive notation

Every subgroup of a cyclic group $G=\langle P\rangle$ is cyclic.
Moreover, if $\# G=N$, then the order of any subgroup of G is a divisor of N, and,
for each positive divisor k of N, the group G has exactly one subgroup of order k : namely, $\langle[N / k] P\rangle$.

$$
\text { Let } p=4 \cdot \ell_{1} \cdots \ell_{n}-1
$$

Supersingular curves and cyclic groups (recall) - -

- $E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z} /(p+1)$
- $E\left(\mathbb{F}_{p^{2}}\right) \cong \mathbb{Z} /(p+1) \times \mathbb{Z} /(p+1)$

Commutative group action

```
Fundamental theorem of cyclic groups *additive notation.
``` \(\qquad\)
```

Every subgroup of a cyclic group $G=\langle P\rangle$ is cyclic.
Moreover, if $\# G=N$, then the order of any subgroup of G is a divisor of $N$, and,
for each positive divisor $k$ of $N$, the group $G$ has exactly one subgroup of order $k$ : namely, $\langle[N / k] P\rangle$.

```
\[
\text { Let } p=4 \cdot \ell_{1} \cdots \ell_{n}-1 .
\]

There is exactly one \(\mathbb{F}_{p}\)-rational \(\ell\)-isogeny from each \(E\).

\section*{Commutative group action}
```

Fundamental theorem of cyclic groups *additive notation.

``` \(\qquad\)
```

Every subgroup of a cyclic group $G=\langle P\rangle$ is cyclic.
Moreover, if $\# G=N$, then the order of any subgroup of G is a divisor of $N$, and,
for each positive divisor $k$ of $N$, the group $G$ has exactly one subgroup of order $k$ : namely, $\langle[N / k] P\rangle$.

```
\[
\text { Let } p=4 \cdot \ell_{1} \cdots \ell_{n}-1
\]

There is exactly one \(\mathbb{F}_{p}\)-rational \(\ell\)-isogeny from each \(E\).

There are exactly \((\ell+1) \mathbb{F}_{p^{2}}\)-rational \(\ell\)-isogenies from each \(E\).

\section*{Commutative group action}
```

Fundamental theorem of cyclic groups *additive notation.

``` \(\qquad\)
```

Every subgroup of a cyclic group $G=\langle P\rangle$ is cyclic.
Moreover, if $\# G=N$, then the order of any subgroup of G is a divisor of $N$, and,
for each positive divisor $k$ of $N$, the group $G$ has exactly one subgroup of order $k$ : namely, $\langle[N / k] P\rangle$.

```
\[
\text { Let } p=4 \cdot \ell_{1} \cdots \ell_{n}-1 .
\]

There is exactly one \(\mathbb{F}_{p}\)-rational \(\ell\)-isogeny from each \(E\).

There are exactly \((\ell+1) \mathbb{F}_{p^{2}}\)-rational \(\ell\)-isogenies from each \(E\).

Taking the \(E\left(\mathbb{F}_{p}\right)\) isogeny graph will give us a commutative group action.

\section*{DH key exchange on isogeny graphs}

Isogeny graphs \(E\left(\mathbb{F}_{p}\right)\) with \(p=4 \cdot \ell_{1} \cdots \ell_{n}-1\) a prime.
- Vertices are \(\mathbb{F}_{p}\)-isomorphism classes of supersingular elliptic curves.
- Edges are prime-degree isogenies between them.

\section*{The CSIDH graph}

Example. Let \(p=4 \cdot 3 \cdot 5 \cdot 7-1\).

3-isogeny

5-isogeny
7-isogeny

\section*{Quadratic twists}

\section*{\(E^{\prime} k\) is a twist of elliptic curve \(E / k\) if \(E^{\prime}\) is isomorphic to \(E\) over \(\bar{k}\).}

For \(E: y^{2}=x^{3}+A x^{2}+x\) over \(\mathbb{F}_{p}\) with \(p \equiv 3 \bmod 4\)
\(E^{\prime}:-y^{2}=x^{3}+A x^{2}+x\) is isomorphic to \(E\) via
\[
(x, y) \mapsto(x, \sqrt{-1} y)
\]

This map is defined over \(\mathbb{F}_{p^{2}}\), so this is a quadratic twist.
\(E^{\prime}\) is not in Weierstrass form (does not have the right shape).
\(E^{\prime}\) is isomorphic to \(E^{\prime \prime}: y^{2}=x^{3}-A x^{2}+x\) via \((x, y) \mapsto(-x, y)\) over \(\mathbb{F}_{p}\).
Each \(x \in \mathbb{F}_{p}\) satisfies one of
- \(x^{3}+A x^{2}+x\) is a square in \(\mathbb{F}_{p}\), thus there are two points \(\left(x, \pm \sqrt{x^{3}+A x^{2}+x}\right)\) in \(E\left(\mathbb{F}_{p}\right)\).
- \(x^{3}+A x^{2}+x\) is not a square in \(\mathbb{F}_{p}\), thus there are two points \(\left(x, \pm \sqrt{-\left(x^{3}+A x^{2}+x\right)}\right)\) in \(E^{\prime}\left(\mathbb{F}_{p}\right)\).
- \(x^{3}+A x^{2}+x=0\), thus \((x, 0)\) is a point in \(E\left(\mathbb{F}_{p}\right)\) and in \(E^{\prime}\left(\mathbb{F}_{p}\right)\).

\section*{Quadratic twists in SageMath}
```

Quadratic twists
p=419
Fp=GF(p)
Fp2=GF(p^2)
E=EllipticCurve(Fp, [0, 410, 0, 1, 0])
assert E.order()==p+1 \#check that it is a supersingular curve
E_t=E.quadratic_twist()
print("The quadratic twist of E ", E.montgomery model().a2(), "is E ", E t.
montgomery_model().a2())
print("Indeed, -", E.montgomery_model().a2(), "is ", -Fp(E.montgomery_model().a2
()), "over ", Fp)
\checkmark ~ 0 . 0 s
The quadratic twist of E_ 410 is E_ 9
Indeed, - 410 is 9 over Finite Field of size 419

```

\section*{The CSIDH graph}

Example. Let \(p=4 \cdot 3 \cdot 5 \cdot 7-1\).

3-isogeny

5-isogeny

7-isogeny

\section*{CSIDH}

\section*{CSIDH}
- Choose small primes \(\ell_{1}, \ldots, \ell_{n}\), making sure \(p=4 \cdot \ell_{1} \cdots \ell_{n}-1\) is prime \(\rightarrow\) we can compute \(\ell_{i}\)-steps in the positive or in the negative direction, for all \(\ell_{i}\).

\section*{CSIDH}
- Choose small primes \(\ell_{1}, \ldots, \ell_{n^{\prime}}\) making sure \(p=4 \cdot \ell_{1} \cdots \ell_{n}-1\) is prime \(\rightarrow\) we can compute \(\ell_{i}\)-steps in the positive or in the negative direction, for all \(\ell_{i}\).

Example. CSIDH-512: \(p=4 \cdot \prod \ell_{i}-1\), for \(\ell_{i} \in\{3,5, \ldots, 377,587\}\) (the first 73 primes and 587).

\section*{CSIDH}
- Choose small primes \(\ell_{1}, \ldots, \ell_{n^{\prime}}\) making sure \(p=4 \cdot \ell_{1} \cdots \ell_{n}-1\) is prime \(\rightarrow\) we can compute \(\ell_{i}\)-steps in the positive or in the negative direction, for all \(\ell_{i}\).

Example. CSIDH-512: \(p=4 \cdot \prod \ell_{i}-1\), for \(\ell_{i} \in\{3,5, \ldots, 377,587\}\) (the first 73 primes and 587).
- Vertices are supersingular curves \(y^{2}=x^{3}+A x^{2}+x\) with \(A \in \mathbb{F}_{p}\).

\section*{CSIDH}
- Choose small primes \(\ell_{1}, \ldots, \ell_{n^{\prime}}\) making sure \(p=4 \cdot \ell_{1} \cdots \ell_{n}-1\) is prime \(\rightarrow\) we can compute \(\ell_{i}\)-steps in the positive or in the negative direction, for all \(\ell_{i}\).

Example. CSIDH-512: \(p=4 \cdot \prod \ell_{i}-1\), for \(\ell_{i} \in\{3,5, \ldots, 377,587\}\) (the first 73 primes and 587).
- Vertices are supersingular curves \(y^{2}=x^{3}+A x^{2}+x\) with \(A \in \mathbb{F}_{p}\).
- Alice's (Bob's) path is an isogeny of degree \(\prod \ell_{i}^{e_{i}}\).

\section*{CSIDH}
- Choose small primes \(\ell_{1}, \ldots, \ell_{n^{\prime}}\) making sure \(p=4 \cdot \ell_{1} \cdots \ell_{n}-1\) is prime \(\rightarrow\) we can compute \(\ell_{i}\)-steps in the positive or in the negative direction, for all \(\ell_{i}\).

Example. CSIDH-512: \(p=4 \cdot \prod \ell_{i}-1\), for \(\ell_{i} \in\{3,5, \ldots, 377,587\}\) (the first 73 primes and 587).
- Vertices are supersingular curves \(y^{2}=x^{3}+A x^{2}+x\) with \(A \in \mathbb{F}_{p}\).
- Alice's (Bob's) path is an isogeny of degree \(\prod \ell_{i}^{e_{i}}\).

Example. CSIDH-512: Exponents are \(-5 \leq e_{i} \leq 5\), for all \(1 \leq i \leq 74\).

\section*{CSIDH}
- Choose small primes \(\ell_{1}, \ldots, \ell_{n^{\prime}}\) making sure \(p=4 \cdot \ell_{1} \cdots \ell_{n}-1\) is prime \(\rightarrow\) we can compute \(\ell_{i}\)-steps in the positive or in the negative direction, for all \(\ell_{i}\).

Example. CSIDH-512: \(p=4 \cdot \prod \ell_{i}-1\), for \(\ell_{i} \in\{3,5, \ldots, 377,587\}\) (the first 73 primes and 587).
- Vertices are supersingular curves \(y^{2}=x^{3}+A x^{2}+x\) with \(A \in \mathbb{F}_{p}\).
- Alice's (Bob's) path is an isogeny of degree \(\prod \ell_{i}^{e_{i}}\).

Example. CSIDH-512: Exponents are \(-5 \leq e_{i} \leq 5\), for all \(1 \leq i \leq 74\).

Example. \(p=419=4 \cdot 3 \cdot 5 \cdot 7-1\).

\section*{Walking the CSIDH graph}

Taking a positive \(\ell_{i}\)-step.

Taking a negative \(\ell_{i}\)-step.

\section*{Walking the CSIDH graph}

Taking a positive \(\ell_{i}\)-step.
- Find a point \((x, y) \in E\) of order \(\ell_{i}\) with \(x, y \in \mathbb{F}_{p}\).
- Compute the isogeny with kernel \(\langle(x, y)\rangle\) using Vélu's formulas.

Taking a negative \(\ell_{i}\)-step.

\section*{Walking the CSIDH graph}

Taking a positive \(\ell_{i}\)-step.
- Find a point \((x, y) \in E\) of order \(\ell_{i}\) with \(x, y \in \mathbb{F}_{p}\).
- Compute the isogeny with kernel \(\langle(x, y)\rangle\) using Vélu's formulas.

Taking a negative \(\ell_{i}\)-step.
- Find a point \((x, y) \in E\) of order \(\ell_{i}\) with \(x \in \mathbb{F}_{p}\), but \(y \notin \mathbb{F}_{p}\).
- Compute the isogeny with kernel \(\langle(x, y)\rangle\) using Vélu's formulas.

\section*{Walking the CSIDH graph}

Taking a positive \(\ell_{i}\)-step.
- Find a point \((x, y) \in E\) of order \(l_{i}\) with \(x, y \in \mathbb{F}_{p}\).
- Compute the isogeny with kernel \(\langle(x, y)\rangle\) using Vélu's formulas.

Taking a negative \(\ell_{i}\)-step.
- Find a point \((x, y) \in E\) of order \(\ell_{i}\) with \(x \in \mathbb{F}_{p}\), but \(y \notin \mathbb{F}_{p}\).
- Compute the isogeny with kernel \(\langle(x, y)\rangle\) using Vélu's formulas.

Or
- Go to the quadratic twist. Compute a positive \(\ell_{i}\)-step. Go to the quadratic twist.

\section*{What we did not cover}
- The history of SIDH.
- Why CSIDH represents an action of an ideal-class group.
- The Deuring correspondence.
- Isogenies in higher dimensions. \({ }^{\circ 0<} \sim_{x} \propto\)
- SQISign (intuition in assignment - then ask me in the next tutorial)
- Many emerging schemes.```

[^0]: - - Supersingular curves and cyclic groups -
 - $E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z} /(p+1)$
 - $E\left(\mathbb{F}_{p^{2}}\right) \cong \mathbb{Z} /(p+1) \times \mathbb{Z} /(p+1)$

[^1]: © Eichlseder
 Addition $P+Q$

[^2]: Fundamental theorem of cyclic groups *additive notation. \qquad
 Every subgroup of a cyclic group $G=\langle P\rangle$ is cyclic.
 Moreover, if \# $G=N$, then the order of any subgroup of G is a divisor of N, and, for each positive divisor k of N, the group G has exactly one subgroup of order k : namely, $\langle[N / k] P\rangle$.

