Code-based cryptography II

Monika Trimoska

Selected Areas in Cryptology - Part 1
Spring, 2024

TU/e

Error-correcting codes (recall)

- Primary use case: communication over a noisy channel.
- Main idea: introduce some redundancy in order to be able to correct the errors.
- Some structured error-correcting codes have efficient decoding algorithms.
- Decoding is, in general, a hard problem - so it is hard for random codes.

Error-correcting codes (recall)

- Primary use case: communication over a noisy channel.
- Main idea: introduce some redundancy in order to be able to correct the errors.
- Some structured error-correcting codes have efficient decoding algorithms.
- Decoding is, in general, a hard problem - so it is hard for random codes.

Hard problems (often) find their use in cryptography.

Linear codes (recall)

Linear code

An $[n, k]$ linear code \mathscr{C} over \mathbb{F}_{q} is a k-dimensional subspace of \mathbb{F}_{q}^{n}.

Linear codes (recall)

Linear code

An $[n, k]$ linear code \mathscr{C} over \mathbb{F}_{q} is a k-dimensional subspace of \mathbb{F}_{q}^{n}.

- The parameter n is called the length of the code.

Linear codes (recall)

```
    Linear code
    An [n,k] linear code \mathscr{C}}\mathrm{ over }\mp@subsup{\mathbb{F}}{q}{}\mathrm{ is a }k\mathrm{ -dimensional subspace of }\mp@subsup{\mathbb{F}}{q}{n
```

- The parameter n is called the length of the code.
- The parameter k is called the dimension of the code.

Linear codes (recall)

```
    Linear code
    An [n,k] linear code }\mathscr{C}\mathrm{ over }\mp@subsup{\mathbb{F}}{q}{}\mathrm{ is a }k\mathrm{ -dimensional subspace of }\mp@subsup{\mathbb{F}}{q}{n
```

- The parameter n is called the length of the code.
- The parameter k is called the dimension of the code.
- The elements in the code are called codewords.

Linear codes (recall)

Linear code

```
An \([n, k]\) linear code \(\mathscr{C}\) over \(\mathbb{F}_{q}\) is a \(k\)-dimensional subspace of \(\mathbb{F}_{q}^{n}\).
```

- The parameter n is called the length of the code.
- The parameter k is called the dimension of the code.
- The elements in the code are called codewords.

Linear codes (recall)

Linear code

An $[n, k]$ linear code \mathscr{C} over \mathbb{F}_{q} is a k-dimensional subspace of \mathbb{F}_{q}^{n}.

- The parameter n is called the length of the code.
- The parameter k is called the dimension of the code.
- The elements in the code are called codewords.
r^{--}Hamming metric
For $\mathbf{x} \in \mathbb{F}_{q}^{n}$, the Hamming weight of \mathbf{x} is the number of nonzero elements, aka.

$$
\operatorname{wt}(\mathbf{x})=\left|\left\{i \in\{1, \ldots, n\} \mid x_{i} \neq 0\right\}\right| .
$$

Binary linear codes

```
    Binary linear code
    An \([n, k]\) binary linear code \(\mathscr{C}\) is a \(k\)-dimensional subspace of \(\mathbb{F}_{2}^{n}\).
```

- The parameter n is called the length of the code.
- The parameter k is called the dimension of the code.
- The elements in the code are called codewords.
r^{--}Hamming metric
For $\mathbf{x} \in \mathbb{F}_{2}^{n}$, the Hamming weight of \mathbf{x} is the number of nonzero elements, aka.

$$
\operatorname{wt}(\mathbf{x})=\left|\left\{i \in\{1, \ldots, n\} \mid x_{i} \neq 0\right\}\right| .
$$

Binary linear codes

Binary linear code

An $[n, k]$ binary linear code \mathscr{C} is a k-dimensional subspace of \mathbb{F}_{2}^{n}.

Example. $q=2, n=5, k=3$

$$
\mathbf{G}=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

Binary linear codes

Binary linear code

An $[n, k]$ binary linear code \mathscr{C} is a k-dimensional subspace of \mathbb{F}_{2}^{n}.

Example. $q=2, n=5, k=3$

$$
\mathbf{G}=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

Codewords: $\lambda_{1}(10101)+\lambda_{2}(11000)+\lambda_{3}(11110)$

Example. $\mathbf{c}_{1}=(111) \mathbf{G}=(10011)$,

$$
\mathbf{c}_{2}=(100) \mathbf{G}=(10101)
$$

Decoding

\longrightarrow Encoding: $\mathbf{c}=\mathbf{m G}$

\longrightarrow Introducing error \mathbf{e} of low weight: $\mathbf{y}=\mathbf{c}+\mathbf{e}=\mathbf{m G}+\mathbf{e}$, s.t. $\mathrm{wt}(\mathbf{e})=t$.
\longrightarrow Decoding: Given \mathbf{y}, find \mathbf{c} s.t. $\mathbf{y}=\mathbf{c}+\mathbf{e}$ and $\mathrm{wt}(\mathbf{e}) \leq t$.

Representations of linear codes

\longrightarrow The row space of a generator matrix $\mathbf{G} \in \mathbb{F}_{2}^{k \times n}:$

$$
\mathscr{C}=\left\{\mathbf{x} \mathbf{G} \mid \mathbf{x} \in \mathbb{F}_{2}^{k}\right\} .
$$

Example, $n=7, k=4$
$\mathbf{G}=\left(\begin{array}{lllllll}1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right)$

Representations of linear codes

\longrightarrow The row space of a generator matrix $\mathbf{G} \in \mathbb{F}_{2}^{k \times n}:$

$$
\mathscr{C}=\left\{\mathbf{x} \mathbf{G} \mid \mathbf{x} \in \mathbb{F}_{2}^{k}\right\} .
$$

Example, $n=7, k=4$
$\mathbf{G}=\left(\begin{array}{lllllll}1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right)$
\longrightarrow The kernel space of a parity-check matrix $\mathbf{H} \in \mathbb{F}_{2}^{(n-k) \times n}$:

$$
\mathscr{C}=\left\{\mathbf{c} \mid \mathbf{H c}=0, \mathbf{c} \in \mathbb{F}_{2}^{n}\right\}
$$

Representations of linear codes

\longrightarrow The row space of a generator matrix $\mathbf{G} \in \mathbb{F}_{2}^{k \times n}:$

$$
\mathscr{C}=\left\{\mathbf{x} \mathbf{G} \mid \mathbf{x} \in \mathbb{F}_{2}^{k}\right\} .
$$

Example, $n=7, k=4$
$\mathbf{G}=\left(\begin{array}{lllllll}1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right)$
\longrightarrow The kernel space of a parity-check matrix $\mathbf{H} \in \mathbb{F}_{2}^{(n-k) \times n}$:
Example. $n=7, k=4$

$$
\mathscr{C}=\left\{\mathbf{c} \mid \mathbf{H c}=0, \mathbf{c} \in \mathbb{F}_{2}^{n}\right\}
$$

$$
\mathbf{H}=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

From \mathbf{G} to \mathbf{H}

From \mathbf{G} to \mathbf{H}

From \mathbf{G} to \mathbf{H}

From \mathbf{G} to \mathbf{H}

From \mathbf{G} to \mathbf{H}

\longrightarrow When $\mathbf{c}=\mathbf{m} \tilde{\mathbf{G}}$, the first k positions of \mathbf{c} are \mathbf{m}.

From \mathbf{G} to \mathbf{H}

\longrightarrow When $\mathbf{c}=\mathbf{m} \tilde{\mathbf{G}}$, the first k positions of \mathbf{c} are \mathbf{m}.
Example. (1010) $\tilde{\mathbf{G}}=(1010101)$

From \mathbf{G} to \mathbf{H}

From \mathbf{G} to \mathbf{H}

\longrightarrow We can form the parity-check matrix as $\mathbf{H}=\left(\mathbf{Q}^{\top} \mid \mathbf{I}_{n-k}\right)$.

From \mathbf{G} to \mathbf{H}

\longrightarrow We can form the parity-check matrix as $\mathbf{H}=\left(\mathbf{Q}^{\top} \mid \mathbf{I}_{n-k}\right)$.
Example.

$$
\mathbf{H}=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

From \mathbf{G} to \mathbf{H}

We have $\tilde{\mathbf{G}}=\left(\mathbf{I}_{k} \mid \mathbf{Q}\right)$.
We can form the parity-check matrix as $\mathbf{H}=\left(\mathbf{Q}^{\top} \mid \mathbf{I}_{n-k}\right)$.

From \mathbf{G} to \mathbf{H}

We have $\tilde{\mathbf{G}}=\left(\mathbf{I}_{k} \mid \mathbf{Q}\right)$.
We can form the parity-check matrix as $\mathbf{H}=\left(\mathbf{Q}^{\top} \mid \mathbf{I}_{n-k}\right)$.

Every codeword is in the kernel space of \mathbf{H} :

From \mathbf{G} to \mathbf{H}

We have $\tilde{\mathbf{G}}=\left(\mathbf{I}_{k} \mid \mathbf{Q}\right)$.
We can form the parity-check matrix as $\mathbf{H}=\left(\mathbf{Q}^{\top} \mid \mathbf{I}_{n-k}\right)$.

Every codeword is in the kernel space of \mathbf{H} :

$$
\mathbf{H}(\mathbf{m} \tilde{\mathbf{G}})^{\top}=\mathbf{H} \tilde{\mathbf{G}}^{\top} \mathbf{m}^{\top}=\left(\begin{array}{ll}
\mathbf{Q}^{\top} & \mathbf{I}_{n-k}
\end{array}\right)\binom{\mathbf{I}_{k}}{\mathbf{Q}^{\top}} \mathbf{m}^{\top}=\left(\mathbf{Q}^{\top}+\mathbf{Q}^{\top}\right) \mathbf{m}^{\top}=\mathbf{0} \cdot \mathbf{m}^{\top}=\mathbf{0}
$$

Example: Hamming code

Example, $n=7, k=4$

$$
\mathbf{H}=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Example: Hamming code

Columns correspond to a bit pattern of length $(n-k)$.
Example, $n=7, k=4$

\[

\]

Example: Hamming code

An error occurs.
Example. $n=7, k=4$

$$
\left.\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\mathbf{c} \\
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
\mathbf{e} \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Example: Hamming code

An error occurs.
Example. $n=7, k=4$

$$
\left.\begin{array}{lllllll}
& \begin{array}{lllll}
1 & 1 & 0 & 1 & 1
\end{array} 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{c}
\mathbf{c} \\
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right)+\binom{\mathbf{e}}{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Example: Hamming code

An error occurs.
Example. $n=7, k=4$

$$
\left.\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{c}
\mathbf{c} \\
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
\mathbf{e} \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

Example: Hamming code

An error occurs.
Example. $n=7, k=4$

$$
\left.\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{c}
\mathbf{c} \\
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{c}
\mathbf{e} \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

Example: Hamming code

An error occurs.
Example. $n=7, k=4$

$$
\left.\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{c}
\mathbf{c} \\
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
\mathbf{e} \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right)\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Example: Hamming code

An error occurs.
Example, $n=7, k=4$

$$
\left.\left.\right)=\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Example: Hamming code

An error occurs.
Example. $n=7, k=4$

$$
\left.\begin{array}{c}
\mathbf{H} \\
\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0
\end{array}\right) \\
1
\end{array}\right)\left(\begin{array}{c}
\mathbf{c} \\
\mathbf{e} \\
\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right)
\end{array}\right)=\begin{aligned}
& \left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& \begin{array}{l}
\text { The failure pattern uniquely } \\
\text { identifies the error location. }
\end{array} \\
&
\end{aligned}
$$

Example: Hamming code

An error occurs.
Example. $n=7, k=4$

$$
\left.\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{c}
\mathbf{c} \\
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{c}
\mathbf{e} \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right)\right)=\begin{aligned}
& \left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& \longrightarrow
\end{aligned}
$$

The failure pattern uniquely identifies the error location.
\longrightarrow
We will call it a syndrome.

Syndrome decoding

Syndrome decoding

$$
\mathbf{H y}=\mathbf{H}(\mathbf{c}+\mathbf{e})=\mathbf{H c}+\mathbf{H e}=\mathbf{0}+\mathbf{H e}=\mathbf{H e}
$$

Syndrome decoding

The syndrome decoding problem

The syndrome decoding problem

Given a syndrome $\mathbf{s}=\mathbf{H e}$, find \mathbf{e} such that $w t(\mathbf{e}) \leq t$.

The syndrome decoding problem

The syndrome decoding problem

Given a syndrome $\mathbf{s}=\mathbf{H e}$, find \mathbf{e} such that $\mathrm{wt}(\mathbf{e}) \leq t$.

\[

\]

Find \mathbf{e} of minimum weight.

Information set decoding

Information set decoding algorithms

Focus on the case $\mathrm{wt}(\mathbf{e})=t$

The syndrome decoding problem

Given a syndrome $\mathbf{s}=\mathbf{H e}$, find \mathbf{e} such that $\mathrm{wt}(\mathbf{e})=t$.

Brute force

Brute force

Brute force

Brute force

\mathbf{s} is equal to the sum of the columns where e_{i} is nonzero.

Brute force

s is equal to the sum of the columns where e_{i} is nonzero.

Pick any group of t columns of \mathbf{H}, add them and compare with \mathbf{s}.

Brute force: complexity

Pick any group of t columns of \mathbf{H}, add them and compare with \mathbf{s}.
\longrightarrow Cost: $\binom{n}{t}$ sums of t columns.

Prange's attack

Prange's attack

Permute \mathbf{H} and bring to systematic form.

Prange's attack

Permute \mathbf{H} and bring to systematic form.

Prange's attack

Permute \mathbf{H} and bring to systematic form.
Suppose that all t errors are in the identity (right) part. Then $\mathbf{e}^{\prime}=(000 \ldots) \| \mathbf{U s}$ and $\mathrm{wt}(\mathbf{U s})=t$.

Prange's attack

\longrightarrow Permute \mathbf{H} and bring to systematic form.
Suppose that all t errors are in the identity (right) part. Then $\mathbf{e}^{\prime}=(000 \ldots) \| \mathbf{U s}$ and $w t(\mathbf{U s})=t$.
\longrightarrow If $\operatorname{wt}(\mathbf{U s})=t$, then output unpermuted version of \mathbf{e}^{\prime}.
\longrightarrow Else, return to the first step and rerandomize: choose a new permutation.

Prange's attack: complexity

\longrightarrow Permute \mathbf{H} and bring to systematic form.

\longrightarrow If $w t(\mathbf{U s})=t$, then output unpermuted version of \mathbf{e}
Else, return to the first step and rerandomize: choose a new permutation.

Prange's attack: complexity

\longrightarrow Permute \mathbf{H} and bring to systematic form.

\longrightarrow If $w t(\mathbf{U s})=t$, then output unpermuted version of \mathbf{e}
Else, return to the first step and rerandomize: choose a new permutation.

All errors are in
the identity part
$\xrightarrow{\longrightarrow}$
Probability that we are in the correct configuration:

Prange's attack: complexity

\longrightarrow Permute \mathbf{H} and bring to systematic form.

\longrightarrow If $\mathrm{wt}(\mathbf{U s})=t$, then output unpermuted version of \mathbf{e}.
Else, return to the first step and rerandomize: choose a new permutation.

All errors are in the identity part

Probability that we are in the correct configuration:

$$
\frac{\binom{n-k}{t}}{\binom{n}{t}}
$$

$$
\longrightarrow \text { Cost: } \frac{\binom{n}{t}}{\binom{n-k}{t}} \text { matrix operations. }
$$

Lee-Brickell attack

Permute \mathbf{H} and bring to systematic form.

Lee-Brickell attack

[^0]
Lee-Brickell attack

\longrightarrow Permute \mathbf{H} and bring to systematic form.
Suppose that there are $(t-p)$ errors are in the identity (right) part and p errors in the left part.
Then, \mathbf{s}^{\prime} is random-looking, but \mathbf{s}^{\prime} summed with the error columns on the left has weight $t-p$: $\mathrm{wt}\left(\mathbf{s}^{\prime}+\mathbf{Q p}\right)=t-p$.

Lee-Brickell attack

Let \mathbf{p} be a vector chosen from
$\left\{\mathbf{p} \in \mathbb{F}^{k} \mid \mathrm{wt}(\mathbf{p})=p\right\}$

Permute \mathbf{H} and bring to systematic form.
Suppose that there are $(t-p)$ errors are in the identity (right) part and p errors in the left part.
Then, \mathbf{s}^{\prime} is random-looking, but \mathbf{s}^{\prime} summed with the error columns on the left has weight $t-p$: $\mathrm{wt}\left(\mathbf{s}^{\prime}+\mathbf{Q p}\right)=t-p$.

Lee-Brickell attack

\longrightarrow Permute \mathbf{H} and bring to systematic form.
\longrightarrow Pick p of the columns on the left and compute their sum: Qp.
\longrightarrow If $\mathrm{wt}\left(\mathbf{s}^{\prime}+\mathbf{Q p}\right)=t-p$ then put $\mathbf{e}^{\prime}=\mathbf{p} \|\left(\mathbf{s}^{\prime}+\mathbf{Q p}\right)$. Output unpermuted version of \mathbf{e}.
\longrightarrow Else, return to the second step to choose another subset of columns from \mathbf{Q}, or return to the first step and rerandomize.

Lee-Brickell attack: complexity

$\%$

Lee-Brickell attack: complexity

Lee-Brickell attack: complexity

Leon's attack

Since $\mathbf{s}^{\prime}+\mathbf{Q p}$ should be of low weight, we check instead if an arbitrary subset of l rows are all zero.

Leon's attack

Leon's attack: complexity

:

Stern's attack

$$
\begin{aligned}
& \begin{array}{llll}
\mathbf{e}^{\prime} & \mathbf{H}_{2} & \mathbf{H}_{6} & \mathrm{~s}^{\prime}+\mathbf{Q p}
\end{array} \\
& \begin{array}{c}
+ \\
\text { ! } \\
+1
\end{array} \\
& \theta+\theta=\vec{\square}
\end{aligned}
$$

Stern's attack

Suppose that there are exactly $\frac{p}{2}$ errors in the first half of \mathbf{Q} and exactly $\frac{p}{2}$ errors in the first half of \mathbf{Q}.

Stern's attack

Suppose that there are exactly $\frac{p}{2}$ errors in the first half of \mathbf{Q} and exactly $\frac{p}{2}$ errors in the first half of \mathbf{Q}.

Instead of looking for an all zero subset of rows, we are looking for a collision.

Stern's attack

\longrightarrow Pick a subset L of l rows: \mathbf{H}_{L}.
\longrightarrow Permute \mathbf{H} and bring to systematic form (then $\mathbf{H}_{L}=\left(\begin{array}{ll}\mathbf{Q}_{L} & \mathbf{I}_{L}\end{array}\right)$).
\longrightarrow Split \mathbf{Q} into two disjoint parts: $\mathbf{Q}=\left(\begin{array}{ll}\mathbf{A} & \mathbf{B}\end{array}\right)$.
\longrightarrow Build a list of vectors $\left(\mathbf{s}_{L}^{\prime}+\mathbf{A}_{L} \mathbf{a}\right)$ for all (many) \mathbf{a}. \qquad \mathbf{a} and \mathbf{b} are vectors chosen from $W=\left\{\mathbf{w} \in \mathbb{F}_{2}^{k / 2} \left\lvert\, \mathrm{wt}(\mathbf{w})=\frac{p}{2}\right.\right\}$
For all (many) b: \qquad
\longrightarrow If $\mathbf{B}_{L} \mathbf{b}$ collides with (is equal to) any of the vectors in the list built in the fourth step
\longrightarrow If wt $\left(\mathbf{s}^{\prime}+\mathbf{A a}+\mathbf{B b}\right)=t-p$ then put $\mathbf{e}^{\prime}=\mathbf{a}\|\mathbf{b}\|\left(\mathbf{s}^{\prime}+\mathbf{A a}+\mathbf{B b}\right)$. Output unpermuted version of \mathbf{e}.
Else return to the second step and rerandomize.

Stern's attack: complexity

ISD algorithms summary

Prange

Lee-Brickell

Leon

Stern

MPC-in-the-Head construction

[^0]: Permute \mathbf{H} and bring to systematic form.
 Suppose that there are $(t-p)$ errors are in the identity (right) part and p errors in the left part.

