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Error-correcting codes (recall)

Encoding

Alice

Decoding

Bob

• Primary use case: communication over a noisy channel.

• Main idea: introduce some redundancy in order to be able to correct the errors.

• Some structured error-correcting codes have efficient decoding algorithms.

• Decoding is, in general, a hard problem - so it is hard for random codes.
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Error-correcting codes (recall)

Encoding

Alice

Decoding

Bob

• Primary use case: communication over a noisy channel.

• Main idea: introduce some redundancy in order to be able to correct the errors.

• Some structured error-correcting codes have efficient decoding algorithms.

• Decoding is, in general, a hard problem - so it is hard for random codes.

Hard problems (often) find their use in cryptography.
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Linear codes (recall)

Linear code
An  linear code  over  is a -dimensional subspace of .[n, k] 𝒞 𝔽q k 𝔽n

q

• The parameter  is called the length of the code.n

• The parameter  is called the dimension of the code.k

• The elements in the code are called codewords.

Hamming metric
For , the Hamming weight of  is the number of nonzero elements, aka. x ∈ 𝔽n

q x

.wt(x) = |{i ∈ {1,…, n} |xi ≠ 0} |

Generator matrix
The matrix  is called a generator matrix of , ifG ∈ 𝔽k×n

q 𝒞

.𝒞 = {xG |x ∈ 𝔽k
q}



4

Binary linear codes

Binary linear code
An  binary linear code  is a -dimensional subspace of .[n, k] 𝒞 k 𝔽n

2

• The parameter  is called the length of the code.n

• The parameter  is called the dimension of the code.k

• The elements in the code are called codewords.

Hamming metric
For , the Hamming weight of  is the number of nonzero elements, aka. x ∈ 𝔽n

2 x

.wt(x) = |{i ∈ {1,…, n} |xi ≠ 0} |

Generator matrix
The matrix  is called a generator matrix of , ifG ∈ 𝔽k×n

2 𝒞

.𝒞 = {xG |x ∈ 𝔽k
2}
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Binary linear codes

Example.

G = (
1 0 1 0 1
1 1 0 0 0
1 1 1 1 0)

, , q = 2 n = 5 k = 3

Binary linear code
An  binary linear code  is a -dimensional subspace of .[n, k] 𝒞 k 𝔽n

2
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Binary linear codes

Example.

G = (
1 0 1 0 1
1 1 0 0 0
1 1 1 1 0)

, , q = 2 n = 5 k = 3

Codewords: λ1(10101) + λ2(11000) + λ3(11110)

, c1 = (111)G = (10011)
c2 = (100)G = (10101)

Example.

Binary linear code
An  binary linear code  is a -dimensional subspace of .[n, k] 𝒞 k 𝔽n

2
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Decoding

Encoding: c = mG

Introducing error  of low weight: , s.t. . e y = c + e = mG + e wt(e) = t

Decoding: Given , find  s.t.  and .y c y = c + e wt(e) ≤ t
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Representations of linear codes

The row space of a generator matrix  :  G ∈ 𝔽k×n
2

.𝒞 = {xG |x ∈ 𝔽k
2}

Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

, n = 7 k = 4
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Representations of linear codes

The row space of a generator matrix  :  G ∈ 𝔽k×n
2

.𝒞 = {xG |x ∈ 𝔽k
2}

Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

, n = 7 k = 4

The kernel space of a parity-check matrix  :H ∈ 𝔽 (n−k)×n
2

.𝒞 = {c |Hc = 0, c ∈ 𝔽n
2}

*We are omitting the transpose ( ) for vectors.⊤
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Representations of linear codes

The row space of a generator matrix  :  G ∈ 𝔽k×n
2

.𝒞 = {xG |x ∈ 𝔽k
2}

Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

, n = 7 k = 4

The kernel space of a parity-check matrix  :H ∈ 𝔽 (n−k)×n
2

.𝒞 = {c |Hc = 0, c ∈ 𝔽n
2}

*We are omitting the transpose ( ) for vectors.⊤

Example.

H = (
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

, n = 7 k = 4
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From  to G H
Systematic form

A systematic generator matrix is a generator matrix of the form

, where  is the  identity matrix and  is a  matrix.(Ik |Q) Ik k × k Q k × (n − k)

information part redundant part Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

G → G̃

G̃ =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1
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From  to G H

When , the first  positions of  are .c = mG̃ k c m

Systematic form
A systematic generator matrix is a generator matrix of the form
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From  to G H

When , the first  positions of  are .c = mG̃ k c m

Systematic form
A systematic generator matrix is a generator matrix of the form

, where  is the  identity matrix and  is a  matrix.(Ik |Q) Ik k × k Q k × (n − k)

information part redundant part

Example. (1010)G̃ = (1010101)

Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

G → G̃

G̃ =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1
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From  to G H
Systematic form

A systematic generator matrix is a generator matrix of the form

, where  is the  identity matrix and  is a  matrix.(Ik |Q) Ik k × k Q k × (n − k)

information part redundant part Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

G → G̃

G̃ =

1 0 0 0 1 1 0
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From  to G H

We can form the parity-check matrix as .H = (Q⊤ |In−k)

Systematic form
A systematic generator matrix is a generator matrix of the form

, where  is the  identity matrix and  is a  matrix.(Ik |Q) Ik k × k Q k × (n − k)

information part redundant part Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

G → G̃

G̃ =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1
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From  to G H

We can form the parity-check matrix as .H = (Q⊤ |In−k)

Systematic form
A systematic generator matrix is a generator matrix of the form

, where  is the  identity matrix and  is a  matrix.(Ik |Q) Ik k × k Q k × (n − k)

information part redundant part

Example.
H = (

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

G → G̃

G̃ =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1
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From  to G H

We can form the parity-check matrix as .H = (Q⊤ |In−k)

We have .G̃ = (Ik |Q)

Every codeword is in the kernel space of :H

H(mG̃)⊤ = HG̃⊤m⊤ = (Q⊤ In−k) ( Ik

Q⊤) m⊤ = (Q⊤ + Q⊤)m⊤ = 0 ⋅ m⊤ = 0
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Example: Hamming code

Columns correspond to a bit pattern of length .(n − k)

Example.

H = (
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

, n = 7 k = 4
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Example: Hamming code

Columns correspond to a bit pattern of length .(n − k)

Example. , n = 7 k = 4

(
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

H

1
0
1
0
1
0
1

c

= (
0
0
0)
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Example: Hamming code

An error occurs.

Example. , n = 7 k = 4

(
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

H

1
0
1
0
1
0
1

c

= (
1
1
0)

1
0
0
0
0
0
0

e

+
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Example: Hamming code

An error occurs.

Example. , n = 7 k = 4

The failure pattern uniquely 
identifies the error location.
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Example: Hamming code

An error occurs.

Example. , n = 7 k = 4

The failure pattern uniquely 
identifies the error location.

We will call it a 
syndrome.
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Syndrome decoding
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The syndrome of a word  is .y ∈ 𝔽n
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Syndrome decoding

Syndrome
The syndrome of a word  is .y ∈ 𝔽n

2 s = Hy

Hy = H(c + e) = Hc + He = 0 + He = He

The syndrome depends only on 
the error vector.
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The syndrome decoding problem

Given a syndrome , find  such that . s = He e wt(e) ≤ t

The syndrome decoding problem
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The syndrome decoding problem

Given a syndrome , find  such that . s = He e wt(e) ≤ t

The syndrome decoding problem

(
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

H

= (
0
1
0)

e1
e2
e3
e4
e5
e6
e7

e s

Find  of minimum weight.e



e

e

e

e

e

Information set decoding
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Information set decoding algorithms

Given a syndrome , find  such that . s = He e wt(e) = t

The syndrome decoding problem

Focus on the case .wt(e) = t
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Brute force
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H e s
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Brute force

=

H e s

Entry is 0

Entry is 1

Entry is 0 or 1

 is equal to the sum of the columns where  is nonzero.s ei
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Brute force

=

H e s

Entry is 0

Entry is 1

Entry is 0 or 1

 is equal to the sum of the columns where  is nonzero.s ei

Pick any group of  columns of , add them and compare with .t H s
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Brute force: complexity

=

Cost:  sums of  columns.(n
t ) t

Pick any group of  columns of , add them and 
compare with .

t H
s
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Prange’s attack

=

H e s
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Prange’s attack

=

H e s

Permute  and bring to systematic form.H
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Prange’s attack

=

H′ = UHP e s′ = Us

Permute  and bring to systematic form.H
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Prange’s attack

=

H′ = UHP e′ s′ = Us

Permute  and bring to systematic form.H
Suppose that all  errors are in the identity (right) part. Then  and .t e′ = (000…) | |Us wt(Us) = t
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Prange’s attack

=

H′ = UHP e′ s′ = Us

Permute  and bring to systematic form.H
Suppose that all  errors are in the identity (right) part. Then  and .t e′ = (000…) | |Us wt(Us) = t
If , then output unpermuted version of .wt(Us) = t e′ 

Else, return to the first step and rerandomize: choose a new permutation.
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Prange’s attack: complexity

=

Permute  and bring to systematic form.H
If , then output unpermuted version of .wt(Us) = t e
Else, return to the first step and rerandomize: choose a new permutation.
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Prange’s attack: complexity

=

Permute  and bring to systematic form.H
If , then output unpermuted version of .wt(Us) = t e
Else, return to the first step and rerandomize: choose a new permutation.

Probability that we are in the correct configuration:   .
(n − k

t )
(n

t )

All errors are in 
the identity part
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Prange’s attack: complexity

=

Permute  and bring to systematic form.H
If , then output unpermuted version of .wt(Us) = t e
Else, return to the first step and rerandomize: choose a new permutation.

Cost:  matrix operations.
(n

t )
(n − k

t )

Probability that we are in the correct configuration:   .
(n − k

t )
(n

t )

All errors are in 
the identity part
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Lee-Brickell attack

=

H′ = UHP e s′ = Us

Permute  and bring to systematic form.H
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Lee-Brickell attack
s′ = Us

=

H′ = UHP e′ s′ = Us

Permute  and bring to systematic form.H
Suppose that there are  errors are in the identity (right) part and  errors in the left part.(t − p) p
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Lee-Brickell attack

=

H′ = UHP e′ 

Permute  and bring to systematic form.H
Suppose that there are  errors are in the identity (right) part and  errors in the left part.(t − p) p
Then,  is random-looking, but  summed with the error columns on the left has weight : s′ s′ t − p
wt(s′ + Qp) = t − p .

+ +

H2 H6 s′ + Qp
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Lee-Brickell attack

=

H′ = UHP e′ 

Permute  and bring to systematic form.H
Suppose that there are  errors are in the identity (right) part and  errors in the left part.(t − p) p
Then,  is random-looking, but  summed with the error columns on the left has weight : s′ s′ t − p
wt(s′ + Qp) = t − p .

+ +

H2 H6 s′ + Qp

Let  be a vector chosen from p
{p ∈ 𝔽k |wt(p) = p}
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Lee-Brickell attack

=

H′ = UHP e′ 

+ +

H2 H6 s′ + Qp

Permute  and bring to systematic form.H
Pick  of the columns on the left and compute their sum: .p Qp
If  then put . Output unpermuted version of . wt(s′ + Qp) = t − p e′ = p | | (s′ + Qp) e
Else, return to the second step to choose another subset of columns from , or return to the first step 
and rerandomize.

Q
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Lee-Brickell attack: complexity

=+ +
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Lee-Brickell attack: complexity

=+ +

Probability that we are in the correct configuration:   .
(n − k

t − p ) (k
p)

(n
t )

 errors are in 
the identity part
t − p  errors are in the 

left part
p
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Lee-Brickell attack: complexity

=+ +

Cost:  matrix operations  column additions.
(n

t )
(n − k

t − p ) (k
p)

+(k
p)

Probability that we are in the correct configuration:   .
(n − k

t − p ) (k
p)

(n
t )

 errors are in 
the identity part
t − p  errors are in the 

left part
p
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Leon’s attack

=

H′ = UHP e′ 

+ +

H2 H6 s′ + Qp

Since  should be of low weight, we check instead if an arbitrary subset of  rows are all zero. s′ + Qp l
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Leon’s attack

=+ +

Permute  and bring to systematic form (then ).H HL = (QL IL)
Pick  of the columns on the left and compute their sum: .p QLp

If  then put . Output unpermuted version of . wt(s′ + Qp) = t − p e′ = p | | (s′ + Qp) e

Else, return to the third step to choose another subset of columns from , or return to the second step and 
rerandomize.

Q

Pick a subset  of  rows: .L l HL

If wt(s′ L + QLp) = 0

Else, return to the third step to choose another subset of columns from , or return to the second step 
and rerandomize.

Q

 denotes the matrix 
consisting of the rows of  
indexed by 

HL
H

L
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Leon’s attack: complexity

=+ +

Probability that we are in the correct configuration:   .
(n − k − l

t − p ) (k
p)

(n
t )
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Stern’s attack

=

H′ = UHP e′ 

+ +

H2 H6 s′ + Qp
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Stern’s attack

=

H′ = UHP e′ 

+ +

H2 H6 s′ + Qp

Suppose that there are exactly  errors in the first half of  and exactly  errors in the first half of .
p
2

Q
p
2

Q
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Stern’s attack

=

H′ = UHP e′ 

+ +

H2 H6 s′ + Qp

Suppose that there are exactly  errors in the first half of  and exactly  errors in the first half of .
p
2

Q
p
2

Q

Instead of looking for an all zero subset of rows, we are looking for a collision.
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Stern’s attack

Permute  and bring to systematic form (then ).H HL = (QL IL)
Split  into two disjoint parts: .Q Q = (A B)

If  then put . Output unpermuted 
version of . 

wt(s′ + Aa + Bb) = t − p e′ = a | |b | | (s′ + Aa + Bb)
e

Else return to the second step and rerandomize.

Pick a subset  of  rows: .L l HL

If  collides with (is equal to) any of the vectors in the list built in the fourth stepBLb

Build a list of vectors  for all (many) .(s′ L + ALa) a
For all (many)  :b

=+ +

 and  are vectors chosen from a b
W = {w ∈ 𝔽k/2

2 |wt(w) =
p
2

}
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Stern’s attack: complexity

=+ +

Probability that we are in the correct configuration:   .

(n − k − l
t − p ) (k

p
2 )

2

(n
t )



k

n − k − llk/2k/2

k

n − k − llk
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ISD algorithms summary

t0

t − pp

t − pp 0

t − pp/2 0p/2

Prange

Lee-Brickell

Leon

Stern

n − k

n − k



e

e

e

e

e

Next time:
MPC-in-the-Head construction


