
Code-based cryptography II

Selected Areas in Cryptology - Part 1
Spring, 2024

Monika Trimoska

2

Error-correcting codes (recall)

Encoding

Alice

Decoding

Bob

• Primary use case: communication over a noisy channel.

• Main idea: introduce some redundancy in order to be able to correct the errors.

• Some structured error-correcting codes have efficient decoding algorithms.

• Decoding is, in general, a hard problem - so it is hard for random codes.

2

Error-correcting codes (recall)

Encoding

Alice

Decoding

Bob

• Primary use case: communication over a noisy channel.

• Main idea: introduce some redundancy in order to be able to correct the errors.

• Some structured error-correcting codes have efficient decoding algorithms.

• Decoding is, in general, a hard problem - so it is hard for random codes.

Hard problems (often) find their use in cryptography.

3

Linear codes (recall)

Linear code
An linear code over is a -dimensional subspace of .[n, k] 𝒞 𝔽q k 𝔽n

q

3

Linear codes (recall)

Linear code
An linear code over is a -dimensional subspace of .[n, k] 𝒞 𝔽q k 𝔽n

q

• The parameter is called the length of the code.n

3

Linear codes (recall)

Linear code
An linear code over is a -dimensional subspace of .[n, k] 𝒞 𝔽q k 𝔽n

q

• The parameter is called the length of the code.n

• The parameter is called the dimension of the code.k

3

Linear codes (recall)

Linear code
An linear code over is a -dimensional subspace of .[n, k] 𝒞 𝔽q k 𝔽n

q

• The parameter is called the length of the code.n

• The parameter is called the dimension of the code.k

• The elements in the code are called codewords.

3

Linear codes (recall)

Linear code
An linear code over is a -dimensional subspace of .[n, k] 𝒞 𝔽q k 𝔽n

q

• The parameter is called the length of the code.n

• The parameter is called the dimension of the code.k

• The elements in the code are called codewords.

Hamming metric
For , the Hamming weight of is the number of nonzero elements, aka. x ∈ 𝔽n

q x

.wt(x) = |{i ∈ {1,…, n} |xi ≠ 0} |

3

Linear codes (recall)

Linear code
An linear code over is a -dimensional subspace of .[n, k] 𝒞 𝔽q k 𝔽n

q

• The parameter is called the length of the code.n

• The parameter is called the dimension of the code.k

• The elements in the code are called codewords.

Hamming metric
For , the Hamming weight of is the number of nonzero elements, aka. x ∈ 𝔽n

q x

.wt(x) = |{i ∈ {1,…, n} |xi ≠ 0} |

Generator matrix
The matrix is called a generator matrix of , ifG ∈ 𝔽k×n

q 𝒞

.𝒞 = {xG |x ∈ 𝔽k
q}

4

Binary linear codes

Binary linear code
An binary linear code is a -dimensional subspace of .[n, k] 𝒞 k 𝔽n

2

• The parameter is called the length of the code.n

• The parameter is called the dimension of the code.k

• The elements in the code are called codewords.

Hamming metric
For , the Hamming weight of is the number of nonzero elements, aka. x ∈ 𝔽n

2 x

.wt(x) = |{i ∈ {1,…, n} |xi ≠ 0} |

Generator matrix
The matrix is called a generator matrix of , ifG ∈ 𝔽k×n

2 𝒞

.𝒞 = {xG |x ∈ 𝔽k
2}

5

Binary linear codes

Example.

G = (
1 0 1 0 1
1 1 0 0 0
1 1 1 1 0)

, , q = 2 n = 5 k = 3

Binary linear code
An binary linear code is a -dimensional subspace of .[n, k] 𝒞 k 𝔽n

2

5

Binary linear codes

Example.

G = (
1 0 1 0 1
1 1 0 0 0
1 1 1 1 0)

, , q = 2 n = 5 k = 3

Codewords: λ1(10101) + λ2(11000) + λ3(11110)

, c1 = (111)G = (10011)
c2 = (100)G = (10101)

Example.

Binary linear code
An binary linear code is a -dimensional subspace of .[n, k] 𝒞 k 𝔽n

2

6

Decoding

Encoding: c = mG

Introducing error of low weight: , s.t. . e y = c + e = mG + e wt(e) = t

Decoding: Given , find s.t. and .y c y = c + e wt(e) ≤ t

7

Representations of linear codes

The row space of a generator matrix : G ∈ 𝔽k×n
2

.𝒞 = {xG |x ∈ 𝔽k
2}

Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

, n = 7 k = 4

7

Representations of linear codes

The row space of a generator matrix : G ∈ 𝔽k×n
2

.𝒞 = {xG |x ∈ 𝔽k
2}

Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

, n = 7 k = 4

The kernel space of a parity-check matrix :H ∈ 𝔽 (n−k)×n
2

.𝒞 = {c |Hc = 0, c ∈ 𝔽n
2}

*We are omitting the transpose () for vectors.⊤

7

Representations of linear codes

The row space of a generator matrix : G ∈ 𝔽k×n
2

.𝒞 = {xG |x ∈ 𝔽k
2}

Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

, n = 7 k = 4

The kernel space of a parity-check matrix :H ∈ 𝔽 (n−k)×n
2

.𝒞 = {c |Hc = 0, c ∈ 𝔽n
2}

*We are omitting the transpose () for vectors.⊤

Example.

H = (
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

, n = 7 k = 4

8

From to G H

8

From to G H
Systematic form

A systematic generator matrix is a generator matrix of the form

, where is the identity matrix and is a matrix.(Ik |Q) Ik k × k Q k × (n − k)

8

From to G H
Systematic form

A systematic generator matrix is a generator matrix of the form

, where is the identity matrix and is a matrix.(Ik |Q) Ik k × k Q k × (n − k)

information part redundant part

8

From to G H
Systematic form

A systematic generator matrix is a generator matrix of the form

, where is the identity matrix and is a matrix.(Ik |Q) Ik k × k Q k × (n − k)

information part redundant part Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

G → G̃

G̃ =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

8

From to G H

When , the first positions of are .c = mG̃ k c m

Systematic form
A systematic generator matrix is a generator matrix of the form

, where is the identity matrix and is a matrix.(Ik |Q) Ik k × k Q k × (n − k)

information part redundant part Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

G → G̃

G̃ =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

8

From to G H

When , the first positions of are .c = mG̃ k c m

Systematic form
A systematic generator matrix is a generator matrix of the form

, where is the identity matrix and is a matrix.(Ik |Q) Ik k × k Q k × (n − k)

information part redundant part

Example. (1010)G̃ = (1010101)

Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

G → G̃

G̃ =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

9

From to G H
Systematic form

A systematic generator matrix is a generator matrix of the form

, where is the identity matrix and is a matrix.(Ik |Q) Ik k × k Q k × (n − k)

information part redundant part Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

G → G̃

G̃ =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

9

From to G H

We can form the parity-check matrix as .H = (Q⊤ |In−k)

Systematic form
A systematic generator matrix is a generator matrix of the form

, where is the identity matrix and is a matrix.(Ik |Q) Ik k × k Q k × (n − k)

information part redundant part Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

G → G̃

G̃ =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

9

From to G H

We can form the parity-check matrix as .H = (Q⊤ |In−k)

Systematic form
A systematic generator matrix is a generator matrix of the form

, where is the identity matrix and is a matrix.(Ik |Q) Ik k × k Q k × (n − k)

information part redundant part

Example.
H = (

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

Example.

G =

1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 1 1 1 1 1 1

G → G̃

G̃ =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

10

From to G H

We can form the parity-check matrix as .H = (Q⊤ |In−k)

We have .G̃ = (Ik |Q)

10

From to G H

We can form the parity-check matrix as .H = (Q⊤ |In−k)

We have .G̃ = (Ik |Q)

Every codeword is in the kernel space of :H

10

From to G H

We can form the parity-check matrix as .H = (Q⊤ |In−k)

We have .G̃ = (Ik |Q)

Every codeword is in the kernel space of :H

H(mG̃)⊤ = HG̃⊤m⊤ = (Q⊤ In−k) (Ik

Q⊤) m⊤ = (Q⊤ + Q⊤)m⊤ = 0 ⋅ m⊤ = 0

11

Example: Hamming code

Columns correspond to a bit pattern of length .(n − k)

Example.

H = (
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

, n = 7 k = 4

12

Example: Hamming code

Columns correspond to a bit pattern of length .(n − k)

Example. , n = 7 k = 4

(
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

H

1
0
1
0
1
0
1

c

= (
0
0
0)

13

Example: Hamming code

An error occurs.

Example. , n = 7 k = 4

(
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

H

1
0
1
0
1
0
1

c

= (
1
1
0)

1
0
0
0
0
0
0

e

+

13

Example: Hamming code

An error occurs.

Example. , n = 7 k = 4

(
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

H

1
0
1
0
1
0
1

c

= (
1
1
0)

1
0
0
0
0
0
0

e

+

(
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

H

1
0
1
0
1
0
1

c

= (
1
0
1)

0
1
0
0
0
0
0

e

+

14

Example: Hamming code

An error occurs.

Example. , n = 7 k = 4

(
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

H

1
0
1
0
1
0
1

c

= (
1
0
1)

0
1
0
0
0
0
0

e

+

14

Example: Hamming code

An error occurs.

Example. , n = 7 k = 4

(
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

H

1
0
1
0
1
0
1

c

= (
0
1
0)

0
0
0
0
0
1
0

e

+

15

Example: Hamming code

An error occurs.

Example. , n = 7 k = 4

(
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

H

1
0
1
0
1
0
1

c

= (
0
1
0)

0
0
0
0
0
1
0

e

+

15

Example: Hamming code

An error occurs.

Example. , n = 7 k = 4

(
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

H

1
0
1
0
1
0
1

c

= (
0
1
0)

0
0
0
0
0
1
0

e

+

15

Example: Hamming code

An error occurs.

Example. , n = 7 k = 4

The failure pattern uniquely
identifies the error location.

(
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

H

1
0
1
0
1
0
1

c

= (
0
1
0)

0
0
0
0
0
1
0

e

+

15

Example: Hamming code

An error occurs.

Example. , n = 7 k = 4

The failure pattern uniquely
identifies the error location.

We will call it a
syndrome.

16

Syndrome decoding

Syndrome
The syndrome of a word is .y ∈ 𝔽n

2 s = Hy

16

Syndrome decoding

Syndrome
The syndrome of a word is .y ∈ 𝔽n

2 s = Hy

Hy = H(c + e) = Hc + He = 0 + He = He

16

Syndrome decoding

Syndrome
The syndrome of a word is .y ∈ 𝔽n

2 s = Hy

Hy = H(c + e) = Hc + He = 0 + He = He

The syndrome depends only on
the error vector.

17

The syndrome decoding problem

Given a syndrome , find such that . s = He e wt(e) ≤ t

The syndrome decoding problem

17

The syndrome decoding problem

Given a syndrome , find such that . s = He e wt(e) ≤ t

The syndrome decoding problem

(
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1)

H

= (
0
1
0)

e1
e2
e3
e4
e5
e6
e7

e s

Find of minimum weight.e

e

e

e

e

e

Information set decoding

19

Information set decoding algorithms

Given a syndrome , find such that . s = He e wt(e) = t

The syndrome decoding problem

Focus on the case .wt(e) = t

20

Brute force

=

H e s

20

Brute force

=

H e s

Entry is 0

Entry is 1

Entry is 0 or 1

21

Brute force

=

H e s

Entry is 0

Entry is 1

Entry is 0 or 1

21

Brute force

=

H e s

Entry is 0

Entry is 1

Entry is 0 or 1

 is equal to the sum of the columns where is nonzero.s ei

21

Brute force

=

H e s

Entry is 0

Entry is 1

Entry is 0 or 1

 is equal to the sum of the columns where is nonzero.s ei

Pick any group of columns of , add them and compare with .t H s

22

Brute force: complexity

=

Cost: sums of columns.(n
t) t

Pick any group of columns of , add them and
compare with .

t H
s

23

Prange’s attack

=

H e s

23

Prange’s attack

=

H e s

Permute and bring to systematic form.H

24

Prange’s attack

=

H′ = UHP e s′ = Us

Permute and bring to systematic form.H

25

Prange’s attack

=

H′ = UHP e′ s′ = Us

Permute and bring to systematic form.H
Suppose that all errors are in the identity (right) part. Then and .t e′ = (000…) | |Us wt(Us) = t

26

Prange’s attack

=

H′ = UHP e′ s′ = Us

Permute and bring to systematic form.H
Suppose that all errors are in the identity (right) part. Then and .t e′ = (000…) | |Us wt(Us) = t
If , then output unpermuted version of .wt(Us) = t e′

Else, return to the first step and rerandomize: choose a new permutation.

27

Prange’s attack: complexity

=

Permute and bring to systematic form.H
If , then output unpermuted version of .wt(Us) = t e
Else, return to the first step and rerandomize: choose a new permutation.

27

Prange’s attack: complexity

=

Permute and bring to systematic form.H
If , then output unpermuted version of .wt(Us) = t e
Else, return to the first step and rerandomize: choose a new permutation.

Probability that we are in the correct configuration: .
(n − k

t)
(n

t)

All errors are in
the identity part

27

Prange’s attack: complexity

=

Permute and bring to systematic form.H
If , then output unpermuted version of .wt(Us) = t e
Else, return to the first step and rerandomize: choose a new permutation.

Cost: matrix operations.
(n

t)
(n − k

t)

Probability that we are in the correct configuration: .
(n − k

t)
(n

t)

All errors are in
the identity part

28

Lee-Brickell attack

=

H′ = UHP e s′ = Us

Permute and bring to systematic form.H

29

Lee-Brickell attack
s′ = Us

=

H′ = UHP e′ s′ = Us

Permute and bring to systematic form.H
Suppose that there are errors are in the identity (right) part and errors in the left part.(t − p) p

30

Lee-Brickell attack

=

H′ = UHP e′

Permute and bring to systematic form.H
Suppose that there are errors are in the identity (right) part and errors in the left part.(t − p) p
Then, is random-looking, but summed with the error columns on the left has weight : s′ s′ t − p
wt(s′ + Qp) = t − p .

+ +

H2 H6 s′ + Qp

30

Lee-Brickell attack

=

H′ = UHP e′

Permute and bring to systematic form.H
Suppose that there are errors are in the identity (right) part and errors in the left part.(t − p) p
Then, is random-looking, but summed with the error columns on the left has weight : s′ s′ t − p
wt(s′ + Qp) = t − p .

+ +

H2 H6 s′ + Qp

Let be a vector chosen from p
{p ∈ 𝔽k |wt(p) = p}

31

Lee-Brickell attack

=

H′ = UHP e′

+ +

H2 H6 s′ + Qp

Permute and bring to systematic form.H
Pick of the columns on the left and compute their sum: .p Qp
If then put . Output unpermuted version of . wt(s′ + Qp) = t − p e′ = p | | (s′ + Qp) e
Else, return to the second step to choose another subset of columns from , or return to the first step
and rerandomize.

Q

32

Lee-Brickell attack: complexity

=+ +

32

Lee-Brickell attack: complexity

=+ +

Probability that we are in the correct configuration: .
(n − k

t − p) (k
p)

(n
t)

 errors are in
the identity part
t − p errors are in the

left part
p

32

Lee-Brickell attack: complexity

=+ +

Cost: matrix operations column additions.
(n

t)
(n − k

t − p) (k
p)

+(k
p)

Probability that we are in the correct configuration: .
(n − k

t − p) (k
p)

(n
t)

 errors are in
the identity part
t − p errors are in the

left part
p

33

Leon’s attack

=

H′ = UHP e′

+ +

H2 H6 s′ + Qp

Since should be of low weight, we check instead if an arbitrary subset of rows are all zero. s′ + Qp l

34

Leon’s attack

=+ +

Permute and bring to systematic form (then).H HL = (QL IL)
Pick of the columns on the left and compute their sum: .p QLp

If then put . Output unpermuted version of . wt(s′ + Qp) = t − p e′ = p | | (s′ + Qp) e

Else, return to the third step to choose another subset of columns from , or return to the second step and
rerandomize.

Q

Pick a subset of rows: .L l HL

If wt(s′ L + QLp) = 0

Else, return to the third step to choose another subset of columns from , or return to the second step
and rerandomize.

Q

 denotes the matrix
consisting of the rows of
indexed by

HL
H

L

35

Leon’s attack: complexity

=+ +

Probability that we are in the correct configuration: .
(n − k − l

t − p) (k
p)

(n
t)

36

Stern’s attack

=

H′ = UHP e′

+ +

H2 H6 s′ + Qp

36

Stern’s attack

=

H′ = UHP e′

+ +

H2 H6 s′ + Qp

Suppose that there are exactly errors in the first half of and exactly errors in the first half of .
p
2

Q
p
2

Q

36

Stern’s attack

=

H′ = UHP e′

+ +

H2 H6 s′ + Qp

Suppose that there are exactly errors in the first half of and exactly errors in the first half of .
p
2

Q
p
2

Q

Instead of looking for an all zero subset of rows, we are looking for a collision.

37

Stern’s attack

Permute and bring to systematic form (then).H HL = (QL IL)
Split into two disjoint parts: .Q Q = (A B)

If then put . Output unpermuted
version of .

wt(s′ + Aa + Bb) = t − p e′ = a | |b | | (s′ + Aa + Bb)
e

Else return to the second step and rerandomize.

Pick a subset of rows: .L l HL

If collides with (is equal to) any of the vectors in the list built in the fourth stepBLb

Build a list of vectors for all (many) .(s′ L + ALa) a
For all (many) :b

=+ +

 and are vectors chosen from a b
W = {w ∈ 𝔽k/2

2 |wt(w) =
p
2

}

38

Stern’s attack: complexity

=+ +

Probability that we are in the correct configuration: .

(n − k − l
t − p) (k

p
2)

2

(n
t)

k

n − k − llk/2k/2

k

n − k − llk

39

ISD algorithms summary

t0

t − pp

t − pp 0

t − pp/2 0p/2

Prange

Lee-Brickell

Leon

Stern

n − k

n − k

e

e

e

e

e

Next time:
MPC-in-the-Head construction

