Selected Areas in Cryptology - Part 1: Post-quantum cryptography

Exercise sheet 4, 4 March 2024

1. The binary Hamming code with parameters $n=15$ and $k=11$ has the parity-check matrix

$$
\mathbf{H}=\left(\begin{array}{lllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right) .
$$

Correct the word ($0,1,1,0,0,1,1,0,0,0,1,1,0,1,1$).
2. Show that the (regular) decoding problem is equivalent to the syndrome decoding problem. Hint: We need to show the reduction both ways:
(a) We assume that we have access to a syndrome decoder: given a syndrome $\mathbf{s} \in \mathbb{F}_{2}^{n-k}$ and a parity-check matrix $\mathbf{H} \in \mathbb{F}_{2}^{(n-k) \times n}$, the syndrome decoder outputs e such that $\mathbf{s}=\mathbf{H e}$ and wt $(\mathbf{e})=t$. How can we use the syndrome decoder to solve an instance of the decoding problem (given a word $\mathbf{y} \in \mathbb{F}_{2}^{n}$ with t errors and a generator matrix of the code $\mathbf{G} \in \mathbb{F}_{2}^{k \times n}$, find the codeword \mathbf{c} and recover the message) ?
(b) We assume that we have access to a regular decoder: given a word $\mathbf{y} \in \mathbb{F}_{2}^{n}$ with t errors and a generator matrix of the code $\mathbf{G} \in \mathbb{F}_{2}^{k \times n}$, the decoder outputs \mathbf{c} such that $\mathbf{y}=\mathbf{c}+\mathbf{e}$. How can we use the regular decoder to solve an instance of the syndrome decoding problem (given a syndrome $\mathbf{s} \in \mathbb{F}_{2}^{n-k}$ and a parity-check matrix $\mathbf{H} \in \mathbb{F}_{2}^{(n-k) \times n}$, find \mathbf{e} such that $\mathbf{s}=\mathbf{H e}$ and $\left.\mathrm{wt}(\mathbf{e})=t\right) ?$
3. Use Prange's algorithm to solve an instance of the syndrome decoding
problem with parameters $n=10, k=4, t=2$ and input

$$
\mathbf{H}=\left(\begin{array}{llllllllll}
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right), \quad \mathbf{s}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right)
$$

Hint: This example can be solved, for instance, with a permutation that only swaps two columns.

