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Error-correcting codes

Encoding

Alice

Decoding

Bob

• Primary use case: communication over a noisy channel.

• Main idea: introduce some redundancy in order to be able to correct the errors.

• Some structured error-correcting codes have efficient decoding algorithms.

• Decoding is, in general, a hard problem - so it is hard for random codes.

Hard problems (often) find their use in cryptography.



3

Linear codes

Linear code
An  linear code  over  is a -dimensional subspace of .[n, k] 𝒞 𝔽q k 𝔽n

q

• The parameter  is called the length of the code.n

• The parameter  is called the dimension of the code.k

• The elements in the code are called codewords.

Hamming metric
For , the Hamming weight of  is the number of nonzero elements, aka. x ∈ 𝔽n

q x

.wt(x) = |{i ∈ {1,…, n} |xi ≠ 0} |

Generator matrix
The matrix  is called a generator matrix of , ifG ∈ 𝔽k×n

q 𝒞

.𝒞 = {xG |x ∈ 𝔽k
q}
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Linear codes

Linear code
An  linear code  over  is a -dimensional subspace of .[n, k] 𝒞 𝔽q k 𝔽n

q

Example.

G = (
1 0 1 0 1
1 1 0 0 0
1 1 1 1 0)

, , q = 2 n = 5 k = 3

Codewords: λ1(10101) + λ2(11000) + λ3(11110)

, c1 = (111)G = (10011)
c2 = (100)G = (10101)

Example.
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Linear code equivalence

Isometry
An isometry (for our purposes) between two codes  and  is a linear map  that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In our case: an isometry preserves the Hamming weight of codewords.

Which linear transformations preserve the Hamming weight?

G =
2 0 4 0 1
6 1 0 0 0
3 4 1 3 0

Example. , , , q = 7 n = 5 k = 3

Let c = (100)G = (20401)

Let A =

0 2 1 5 6
5 6 4 1 4
5 0 3 2 1
6 6 4 6 4
2 5 6 6 1

cA = (20401)A = (12533) wt(c) ≠ wt(cA)

✘

Multiply a codeword by A ∈ GLn?



Multiply a codeword by a permutation matrix P ?
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Linear code equivalence

Isometry
An isometry (for our purposes) between two codes  and  is a linear map  that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In our case: an isometry preserves the Hamming weight of codewords.

Which linear transformations preserve the Hamming weight?

G =
2 0 4 0 1
6 1 0 0 0
3 4 1 3 0

Example. , , , q = 7 n = 5 k = 3

Let c = (100)G = (20401)

Let P =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

cP = (20401)P = (20014) wt(c) = wt(cP)

✓



Multiply a codeword by a monomial matrix Q ?
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Linear code equivalence

Isometry
An isometry (for our purposes) between two codes  and  is a linear map  that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In our case: an isometry preserves the Hamming weight of codewords.

Which linear transformations preserve the Hamming weight?

G =
2 0 4 0 1
6 1 0 0 0
3 4 1 3 0

Example. , , , q = 7 n = 5 k = 3

Let c = (100)G = (20401)

Let Q =

1 0 0 0 0
0 3 0 0 0
0 0 0 0 6
0 0 2 0 0
0 0 0 2 0

cQ = (20401)Q = (20023) wt(c) = wt(cQ)

✓



We can also multiply  on the left by .G T ∈ GLk
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Linear code equivalence

Isometry
An isometry (for our purposes) between two codes  and  is a linear map  that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In our case: an isometry preserves the Hamming weight of codewords.

Which linear transformations preserve the Hamming weight?

✓This is just a change of basis (because we 
defined the code  as the row span of ).𝒞 G
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Linear code equivalence

Isometry
An isometry (for our purposes) between two codes  and  is a linear map  that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

Equivalent codes
Two codes  and  are equivalent if there is an isometry between them.𝒞 𝒟

In our case: an isometry preserves the Hamming weight of codewords.
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Linear code equivalence

Input: Two generator matrices  for two linear codes  and . 
Question: Find - if any - , a monomial matrix, and  such that .

G1, G2 ∈ 𝔽k×n
q 𝒞 𝒟

Q T ∈ GLk(𝔽q) G2 = TG1Q

The Linear Code Equivalence (LCE) problem
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Matrix (rank-metric) codes

Matrix code
A matrix code  over  is a -dimensional -linear subspace of .𝒞 𝔽q k 𝔽q 𝔽m×n

q

Rank metric
For , the rank weight of  is given by the rank of , aka. C ∈ 𝔽m×n

q C C

.wt(C) = rk(C)

Basis of a matrix code
The basis of a matrix code  is given by the -tuple .𝒞 k (C(1), …, C(k))
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Matrix (rank-metric) codes

Example. q = 13, m = 4, n = 6, k = 5

C = λ1 ⋅

2 8 10 4 5 7
1 11 7 9 6 12
3 0 13 5 4 8
9 6 3 2 10 11

+ λ2 ⋅

12 0 4 11 9 3
5 6 8 13 2 1

10 7 3 9 4 6
2 5 11 8 1 10

+ λ3 ⋅

5 2 9 11 4 8
3 7 1 10 12 0
6 9 2 13 11 8
1 5 6 3 10 7

+ λ4 ⋅

9 4 6 1 13 2
8 0 5 12 6 11
3 7 10 9 4 5
2 8 11 3 7 1

+ λ5 ⋅

7 10 4 6 8 3
1 5 2 11 9 0
13 7 6 4 12 2
8 3 1 9 5 10

λi ∈ 𝔽q
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Matrix code equivalence

Isometry
An isometry (for our purposes) between two codes  and  is a linear map  that preserves the metric.𝒞 𝒟 μ : 𝒞 → 𝒟

In this case: an isometry preserves the rank weight of codewords.

Which linear transformations preserve the rank?

Multiply a codeword on the right by any M ∈ 𝔽n×r
q

Multiply a codeword on the right by B ∈ GLn

Multiply a codeword on the left by A ∈ GLm

✘
✓
✓

Take the transposition of a codeword (only when , does not make the equivalence problem harder)m = n ✓
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Matrix code equivalence

Input: Two -dimensional matrix codes  for two matrix codes  and . 
Question: Find - if any - a map , where  and  such that for 
all , it holds that .

k 𝒞, 𝒟 ⊂ 𝔽m×n
q 𝒞 𝒟

(A, B) A ∈ GLm(𝔽q) B ∈ GLn(𝔽q)
C ∈ 𝒞 ACB ∈ 𝒟

The Matrix Code Equivalence (MCE) problem



15

From matrix codes to 3-tensors

We can think of a matrix code as a 3-tensor over .𝔽q
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From matrix codes to 3-tensors

We can think of a matrix code as a 3-tensor over .𝔽q
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From matrix codes to 3-tensors

Viewed as a 3-tensor, we can see  from three directions𝒞
• a -dimensional code in 

• an -dimensional code in 

• an -dimensional code in  

k 𝔽m×n
q

m 𝔽n×k
q

n 𝔽m×k
q



18

From matrix codes to 3-tensors

Viewed as a 3-tensor, we can see  from three directions𝒞
• a -dimensional code in 

• an -dimensional code in 

• an -dimensional code in  

k 𝔽m×n
q

m 𝔽n×k
q

n 𝔽m×k
q
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From matrix codes to 3-tensors

Viewed as a 3-tensor, we can see  from three directions𝒞
• a -dimensional code in 

• an -dimensional code in 

• an -dimensional code in  

k 𝔽m×n
q

m 𝔽n×k
q

n 𝔽m×k
q
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Tensor isomorphism

The equivalence then becomes tensor isomorphism.
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Tensor isomorphism

The equivalence then becomes tensor isomorphism.
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Tensor isomorphism

The equivalence then becomes tensor isomorphism.
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Tensor isomorphism

The equivalence then becomes tensor isomorphism.
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Tensor isomorphism

The equivalence then becomes tensor isomorphism.
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Tensor isomorphism

The equivalence then becomes tensor isomorphism.
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Tensor isomorphism

The equivalence then becomes tensor isomorphism.
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Tensor isomorphism

The equivalence then becomes tensor isomorphism.



Cryptanalysis
(The MCE case)



Algebraic attack



30

Algebraic attack

The MCE problem in matrix form

Let  be a basis of code  and let  be a basis of code . Find , 
 and  such that

(C(1), …, C(k)) 𝒞 (D(1), …, D(k)) 𝒟 A ∈ GLm(𝔽q)
B ∈ GLn(𝔽q) T ∈ GLk(𝔽q)

D(i) = ∑
1≤ j≤k

tj,iAC( j)B, ∀1 ≤ i ≤ k

Alternatively, this gives a better modelisation: 

∑
1≤ j≤k

tj,iD( j) = AC(i)B, ∀1 ≤ i ≤ k



Combinatorial attack
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Collision

We have a collision when we know a codeword  in  that maps to a codeword  in . C 𝒞 D 𝒟

We can then infer linear constraints from

  A−1D = CB

If we add these linear constraints to the system obtained from the algebraic attack, we can 
efficiently solve the system of equations and recover the isometry (the resolution being efficient 
- close to polynomial - is an empirical result, not yet proven).
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Collision

With two collisions, we get the following system

  A−1D1 = C1B
  A−1D2 = C2B

Results in a linear system with the same number of variables and equations. 

If  are all full rank, we should have a unique solution.C1, C2, D1, D2

We can easily recover  from .A A−1
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The birthday paradox

What is the probability that, in a set of  randomly chosen people, at least two will share a birthday?N

How big should  be to get a probability of 50% ?N

N = 23

The birthday problem in collision search algorithms

We draw, randomly, elements from a set of size .  
How many times do we expect to draw an element before we get the same element 
twice?

N
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The birthday paradox

The birthday problem in collision search algorithms

We draw, randomly, elements from a set of size .  
How many times do we expect to draw an element before we get the same element 
twice?

N

• Probability that there is no collision when the first element is drawn: 1

• Probability that there is no collision when the second element is drawn: 1 −
1
N

• Probability that there is no collision when the third element is drawn: 1 −
2
N

• …
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The birthday paradox
The birthday problem in collision search algorithms

We draw, randomly, elements from a set of size .  
How many times do we expect to draw an element before we get the same element 
twice?

N

P(X > T ) = (1 −
1
N

)(1 −
2
N

)⋯(1 −
T − 1

N
)

Using a first-order Taylor approximation , this simplifies toex ≈ 1 + x

P(X > T ) ≈ e− 1
N ⋅ e− 2

N ⋅ ⋯ ⋅ e− T − 1
N ≈

≈ e−(1+2+⋯+(T−1))/N ≈

≈ e− T(T − 1)
2N

For , we get .P(X > T ) ≈ 63 % T ≈ 1.41 N
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General collision attack
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Collision attack : complexity

Depends on the choice of the predicate . The choice is made such that we obtain the optimal 
balance between the two parts of the algorithm, aka. they take approximately the same time 
(whenever possible).  

ℙ

We will get an intuition for the complexity with an exercise in the assignment.



Digital signatures 
from equivalence 

problems
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Zero-knowledge proof of knowledge

The prover needs to prove to the verifier that they know a secret, without 
revealing the secret or anything about the secret. 
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ZK identification scheme

𝒞0

𝒞1

(A, B)

�̃�
(Ã, B̃)

(Ã
⋅ A

−1 , B
−1 ⋅ B̃)
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ZK identification scheme
𝒞0

𝒞1

(A, B)

�̃�
(Ã, B̃)

(Ã
⋅ A

−1 , B
−1 ⋅ B̃)

A A

Prover Verifier

(A, B) 𝒞0 𝒞1

Commit to ephemeral code  �̃�

Pick a challenge  b ∈ {0,1}

Response
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ZK identification scheme
𝒞0

𝒞1

(A, B)

�̃�
(Ã, B̃)

(Ã
⋅ A

−1 , B
−1 ⋅ B̃)

A A

Prover Verifier

(A, B) 𝒞0 𝒞1

Commit to ephemeral code  �̃�

Pick a challenge  b ∈ {0,1}

Response

 b = 0

 (Ã, B̃)
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ZK identification scheme
𝒞0

𝒞1

(A, B)

�̃�
(Ã, B̃)

(Ã
⋅ A

−1 , B
−1 ⋅ B̃)

A A

Prover Verifier

(A, B) 𝒞0 𝒞1

Commit to ephemeral code  �̃�

Pick a challenge  b ∈ {0,1}

Response

 b = 1

 (Ã ⋅ A−1, B−1 ⋅ B̃)
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ZK identification scheme

𝒞0

𝒞1

(A, B)

�̃�
(Ã, B̃)

(Ã
⋅ A

−1 , B
−1 ⋅ B̃)

𝒞0

𝒞1

(A, B)

�̃�1
(Ã1, B̃1)

(Ã
⋅ A

−1 , B
−1 ⋅ B̃)
𝒞0

𝒞1

(A, B)

�̃�2
(Ã2, B̃2)

(Ã
⋅ A

−1 , B
−1 ⋅ B̃)

𝒞0

𝒞1

(A, B)

�̃�3
(Ã3, B̃3)

(Ã
⋅ A

−1 , B
−1 ⋅ B̃)

𝒞0

𝒞1

(A, B)

�̃�λ
(Ãλ, B̃λ)

(Ã
⋅ A

−1 , B
−1 ⋅ B̃)

To get a security level of 2λ

Repeat  timesλ
⋱
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Properties : completeness

If the statement is true, an honest prover is always able to convince an 
honest verifier.
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Properties : soundness

A dishonest prover cannot convince an honest verifier other than with a 
small probability.

2-Special soundness

Having obtained two valid transcripts with the same commitment and a different 
challenge, we can extract a solution for the underlying problem.
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Properties : zero-knowledge

Anyone observing the transcript (including the verifier) learns nothing 
other than the fact that the statement is true.
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The Fiat-Shamir transform
The goal is to transform an interactive identification scheme into a digital 
signature scheme.

Instead of the prover choosing a challenge, the challenge is 
determined by the hash of the message and commitments.

A A

Signing Verification

Alice Bob

(A, B) 𝒞0 𝒞1

•
•
•  

isometry  

com ← �̃�
ch ← H(m, com)
resp ←

𝒞b → �̃�

•
•
• Check if 

 is an 
isometry 

ch ← H(m, com)
�̃� ← com

resp
𝒞b → �̃�

(com, resp)m
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Soundness amplification

𝒞0

𝒞i ……𝒞1 𝒞s

Multiple public keys

• Provide  public keys

• Challenge is 

• Response is an isometry 

s

b ∈ {0,…, s}

𝒞b → �̃�
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Signatures from equivalence problems

LESS

Patarin’s signature scheme: 

Equivalence-based digital signature schemes in the NIST competition (and elsewhere):

MEDS
ALTEQ

Linear code equivalence

Matrix code equivalence

Alternating trilinear form equivalence

Isomorphism of polynomials (seen in previous lecture)

SeaSign, SQISign: Isogeny between elliptic curves

…


