
Selected Areas in Cryptology - Part 1: Post-quantum
cryptography

Exercise sheet 3, 25 February 2024

1. Write the (one pass) identification protocol using MCE as a hardness
assumption (described in slides 32-34) in more detail. Specifically, you
need to write (on paper, in Magma or in SageMath) the following al-
gorithms

(a) Commitment

Alice’s data: (C
(1)
0 , . . . ,C

(k)
0 ), (C

(1)
1 , . . . ,C

(k)
1 ),A,B,T

Input: none

Output: (C̃
(1)
0 , . . . , C̃

(k)
0 )

(b) Response

Alice’s data: (C
(1)
0 , . . . ,C

(k)
0 ), (C

(1)
1 , . . . ,C

(k)
1 ),A,B,T,

(C̃
(1)
0 , . . . , C̃

(k)
0 ), Ã, B̃, T̃

Input: b ∈ {0, 1}
Output: Aresp,Bresp,Tresp.

Hint: To sample a random element from GLm(q) write

(a) A
$←− GLm(q) on paper ;

(b) A := Random(GL(m, FiniteField(q))); in Magma ;

(c) A = GL(m, GF(q)).random_element() in SageMath ;

2. What is the size of the public key and the signature in a Fiat-Shamir
digital signature scheme using MCE as a hardness assumption, with
parameters q = 5 (one byte), m = n = k = 13, and Fiat-Shamir
security parameter λ = 64 (Recall: this means that the soundness
error of the protocol should be 2−64) ?

3. We modify the signature scheme from Exercise 2 to use the soundness
amplification technique: we have s = 256 end codes in the public key.

(a) How many iterations of the underlying identification protocol do
we need to do, to get to a soundness error of 2−64?

1



(b) What is the size of the public key and the signature in this case?

(c) Bonus: Comparing the answer to b) in this exercise to the an-
swer to Exercise 2, we observe that, with the soundness amplifi-
cation technique, we obtain smaller signatures at the expense of
increasing the size of the public key. Can you find a value for the
parameter s where the public key and the signature are balanced
(their sizes are closest to each other)?

Hint: Once you understand how we calculate the sizes for a fixed
s, you can either (1) write this in a script and loop through increas-
ing values of s until it hits the smallest difference in the sizes, or
(2) do the computation on paper by using a dichotomy approach:
try for some value of s between 1 and 256; if the signature is too
big, try for a (is it bigger or smaller?) value for s and vice versa
if the public key is too big.

4. Write down the equations for the algebraic attack on MCE described
in the lecture (the ”better” modelisation).

(a) What is the degree of the system and what is the number of equa-
tions and variables?

5. Bonus: We consider the combinatorial attack on MCE with parame-
ters n = m = k over Fq. We have chosen a target rank r, and we know

that the probability that a codeword is of this rank r is q−
k
3 .

(a) What is the complexity of the first part of the combinatorial at-
tack, corresponding to the algorithm in SampleSet? Hint: An-
swer the following questions:

i. How many times do we expect to pick a random codeword
before we find a codeword of rank r?

ii. There exist (approximately) how many codewords of rank r
in total?

iii. How many codewords of rank r do we need to find, aka. how
big is the list that we need to build?

Since the goal of this part of the attack is to find enough (as per
the birthday paradox) elements of rank r, the complexity is given
by the number of times we need to draw a random codeword before
we fill the list with the required number of codewords.

2



(b) What is the complexity of the second part of the attack (corre-
sponding to the iteration of the for all loop in the algorithm in
CollisionFind)? To answer this question, we will denote by CFF

the cost of one call to the FindFunction, aka the cost of solving
the corresponding system of equations. Hence, if we find that for
the attack we need to call the FindFunction α times, then we
conclude that the complexity is O(αCFF).

Hint to check your answer: With the target rank r chosen here, you
should obtain the same complexity for both parts of the algorithm.

6. Why is the MCE problem without a change of basis easy? Hint: Think
about what the main goal is in the combinatorial attack.

3


