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Algebraic cryptanalysis (recall) 

secret key

or

forgery

• UOV

public key

message

multivariate
signature
scheme

• Direct attack
• Kipnis-Shamir
• Reconciliation
• Intersection

x1 + x2 + 1 = 0
x1x3 + x4 = 0

algebraic modeling 

• FES
• Simple
• SAT solvers
• Crossbred
• FXL
• BoolSolve
• F4/F5

MQ solver
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Modelisation

A motivating example.

Given matrices  (the space of matrices over  of size ), find  (the space of 
invertible matrices over  of size ), such that 

C1, C2, D1, D2 ∈ ℳn,n(𝔽q) 𝔽q n × n A, B ∈ GLn(𝔽q)
𝔽q n × n

  D1 = AC1B
  D2 = AC2B

Demo

In the assignment: • Write down the equations;
• Find a better modelisation for this problem;
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Modelisation

A motivating example: a better idea for modelisation.

Given matrices  (the space of matrices over  of size ), find  (the space of 
invertible matrices over  of size ), such that 

C1, C2, D1, D2 ∈ ℳn,n(𝔽q) 𝔽q n × n A, B ∈ GLn(𝔽q)
𝔽q n × n

  A−1D1 = C1B
  A−1D2 = C2B

Demo

Results in a linear system with the same number of variables and equations. 

If  are all full rank, we should have a unique solution.C1, C2, D1, D2

We can easily recover  from .A A−1



O V
Multivariate digital signature 

schemes 
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Multivariate signatures

trapdoor 
construction

Fiat-Shamir 
construction

MQDSS
SOFIA

HFEv-

UOV

Examples. Examples.
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The MQ problem (recall)

Given  multivariate quadratic polynomials  of  
variables over a finite field , find a tuple  in , such 
that .

m f (1), …, f (m) n
𝔽q x = (x1, …, xn) 𝔽n

q
f (1)(x) = … = f (m)(x) = 0

The MQ problem

f (k)(x1, …, xn) = ∑
1≤i≤ j≤n

γ(k)
ij xixj + ∑

1≤i≤n

β(k)
i xi + α(k)

A quadratic system of  equations in  variables over a finite field  : m n 𝔽q

Hard in general (should be hard for randomly generated instances).

Can become easy if we have some structure (a trapdoor).
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The trapdoor construction

• Central map:   

• Two bijective linear (or affine) transformations:  
 and 

• Public map: 

f : (x1, …, xn) ∈ 𝔽n
q → (f (1)(x1, …, xn), …, f (m)(x1, …, xn)) ∈ 𝔽m

q

S ∈ GLn(𝔽q) T ∈ GLm(𝔽q)

p = T ∘ f ∘ S

Main idea:

• The central map has a structure such that it is easy to find preimages: it is easy 
(polynomial time) to compute  for a target vector .

• The linear transformations hide the structure of the central map.

f −1(x) x
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The trapdoor construction

w ∈ 𝔽m
q x ∈ 𝔽m

q y ∈ 𝔽n
q z ∈ 𝔽n

q

T−1 S−1f −1

p

General workflow
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The trapdoor construction

A A

Signing Verification

Alice BobCompute:
•
•
•
•  

w = H(m) ∈ 𝔽m
q

x = T−1(w) ∈ 𝔽m
q

y = f −1(x) ∈ 𝔽n
q

z = S−1(y) ∈ 𝔽n
q

Compute:
•
•  

Check if 

w = H(m) ∈ 𝔽m
q

w′ = p(z) ∈ 𝔽m
q

w′ = w

mzmm

f, S, T p
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Isomorphism of polynomials

Input: Two -tuples of multivariate polynomials 
. 

Question: Find - if any -  and  such that .

m
f = ( f (1), …, f (m)), p = (p(1), …, p(m)) ∈ 𝔽q[x1, …, xn]m

S ∈ GLn(𝔽q) T ∈ GLm(𝔽q) p = T ∘ f ∘ S

The Isomorphism of Polynomials (IP) problem

Input: An -tuple of multivariate polynomials  
and a special class of -tuples of multivariate polynomials . 
Question: Find - if any - ,  and  such 
that .

m p = (p(1), …, p(m)) ∈ 𝔽q[x1, …, xn]m

m 𝒞 ⊆ 𝔽q[x1, …, xn]m

S ∈ GLn(𝔽q) T ∈ GLm(𝔽q) f = ( f (1), …, f (m)) ∈ 𝒞
p = T ∘ f ∘ S

The Extended Isomorphism of Polynomials (EIP) problem

Signature schemes with the trapdoor construction rely on EIP, because we do not have the central 
map , but we know the special class to which it belongs (example - UOV - coming up).f



O V
Unbalanced Oil and Vinegar

(UOV) 
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The UOV central map

Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, ’99]

f (k)(x1, …, xn) = ∑
i∈V,j∈V

γ(k)
ij xixj + ∑

i∈V,j∈O

γ(k)
ij xixj +

n

∑
i=1

β(k)
i xi + α(k)

Index set of vinegar variables: V = {1,…, v} Index set of oil variables: O = {v + 1,…, n}

The central map is constructed in such a way that enumerating all of the vinegar variables leaves us with 
a linear system in the oil variables (oil does not mix with oil).
Everything is as described in the previous slides, except that we do not have a linear transformation on 
the output: . T = I
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Matrix representation of quadratic forms

Quadratic form:  f(x) = ∑ γijxixj

so with , we get .x = (x1, …, xn) x⊤Fx
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Matrix representation of bilinear forms

Bilinear form:  f(x, y) = ∑ γijxiyj

so with  and , we get .x = (x1, …, xn) y = (y1, …, yn) x⊤By
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The UOV central map

Toy example:  , v = 7 m = 4

F(1) F(2) F(3) F(4)

x1 x2 x7… x8 x11…
x1x2

x7

…

x8

x11

…

oil 
variables

vinegar 
variables

*Grayed areas represent the entries that are possibly nonzero; blank areas denote the zero entries;
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UOV key generation
In matrix representation

.P(k) = S⊤F(k)S, for all k ∈ {1,…, m}

Why ?

By definition, . p = f ∘ S

In matrix representation, we need: 

x⊤P(k)x = (Sx)⊤F(k)(Sx)

x⊤P(k)x = x⊤S⊤F(k)Sx
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UOV in the NIST competition

UOV
TUOV
PROV
MAYO
VOX
QR-UOV
SNOVA
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UOV in the NIST competition

UOV
TUOV
PROV
MAYO
VOX
QR-UOV
SNOVA

Example.

• We choose  (slightly bigger than) 
 

UOV-like schemes have:
• Big public keys
• Small signatures 

n ∼ 2.5m



O V
Attacks on UOV
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Attacks on UOV

• Direct attack

• Reconciliation attack

• Kipnis-Shamir attack

• Intersection attack



O V
Direct attack
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Direct attack

Try to forge a signature with only the knowledge of the public key.

Constraint for modelisation

For a target , find  such that .w z p(z) = w

Equations:

z⊤P(1)z = w1

z⊤P(2)z = w2

…
z⊤P(m)z = wm



O V
Reconciliation attack
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The secret subspace O
The map  with a UOV trapdoor vanishes on a linear subspace  of  :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

 vanishes on .f O′ 

Let .O = S−1(O′ )

 vanishes on .p O

Let  be the -dimensional space that consists of all the vectors whose first  entries (corresponding to the 
vinegar variables) are zero: .

O′ ∈ 𝔽n
q m n − m

O′ = {v |vi = 0 for all i ≤ n − m}

= 0
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Reconciliation attack

Find the secret oil subspace  : find  linearly independent vectors in .O m O
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The polar form

The polar form of a quadratic map  is the bilinear form  such that p = (p(1), …, p(m)) p′ = (p′ (1), …, p′ (m))

p′ (k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y),  for all k ∈ {1,…, m} .

What does  look like ?p′ (k)(x, y)

Let  be the upper triangular representation of .P̃(k) p(k)

p′ (k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y)

= (x + y)⊤P̃(k)(x + y) − x⊤P̃(k)x − y⊤P̃(k)y

= x⊤P̃(k)y + y⊤P̃(k)x

= x⊤(P̃(k) + P̃(k)⊤)y = x⊤B(k)y

So,  is bilinear and symmetric.p′ 
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Reconciliation attack

Constraint for modelisation
For any vector , we have that  for all . 
For any pair of vectors , we have that  for all .

oi ∈ O o⊤
i P(k)oi = 0 k ∈ {1,…, m}

oi, oj ∈ O o⊤
i B(k)oj = 0 k ∈ {1,…, m}

Equations:

o⊤
i P(k)oi = 0, for k ∈ {1,…, m}

o⊤
i B(k)oj = 0, for k ∈ {1,…, m} and j < i

For  doi ∈ {1,…, m}
oi = (o1, …, ov,0,…,1n−i+1,0,…,0)
Solve:

In the first iteration, we have only quadratic equations, so this is the bottleneck. Linear constraints facilitate 
the resolution of a system.

Find the secret oil subspace  : find  linearly independent vectors in .O m O



O V
Kipnis-Shamir attack
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The orthogonal complement of a subspace

Let . The orthogonal complement of  is  such thatV ⊂ 𝔽n
q V V⊥

.V⊥ = {ṽi ∈ 𝔽n
q |⟨vj, ṽi⟩ = 0, for all vj ∈ V}

If  is -dimensional, then  is -dimensional.V m V⊥ (n − m)
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Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case ( ) - the original proposal of OV.O n = 2m

Finding a common invariant subspace of a large number of linear maps is easy.

Oil and Vinegar becomes Unbalanced Oil and Vinegar because of this attack.

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

⟨o2, B(k)o1⟩ = o⊤
2 B(k)o1

= p′ (k)(o1, o2)
= p(k)(o1 + o2) − p(k)(o1) − p(k)(o2) = 0

Hence, we have that , for all pairs .B(k1)−1B(k2)O = O B(k1), B(k2)

Since , we have that .dim(O⊥) = n − m = m B(k)O = O⊥

Since this is true for all , we have that .B(k) B(k1)O = O⊥ = B(k2)O



O V
Intersection attack
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Intersection attack

Find the secret oil subspace . Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ( ).O n > 2m

Constraint for modelisation

Since , . We still have  and , but they are not (necessarily) the same 
subspace.

n > 2m dim(O⊥) > m B(k1)O ⊂ O⊥ B(k2)O ⊂ O⊥

Equations:

p(B(k1)−1x) = 0
p(B(k2)−1x) = 0
p′ (B(k1)−1x, B(k2)−1x) = 0

The attack can be generalised to find a vector in the intersection of more than two subspaces.

If  is in the intersection , then both  and  are in .x B(k1)O ∩ B(k2)O B(k1)−1x B(k2)−1x O
Idea: assuming that , try to find a vector  in this intersection.B(k1)O ∩ B(k2)O ≠ ∅ x


