Selected Areas in Cryptology - Part 1: Post-quantum cryptography

Exercise sheet 1, 12 February 2024

1. Write a recursive depth-first traversal (DFT) algorithm that enumerates all possible assignments to a solution vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. The algorithm should assign values to variables with an instruction such as $x_{1} \leftarrow 1$ and print out \mathbf{x} on each leaf. This exercise can be done on paper, in Magma (by completing the demo script, for instance), SageMath, or any language of your choice, but without using language-specific syntax or functions.
2. Argument why DFT exhaustive search and Gray-code exhaustive search do not have the same complexity when we account for polynomial factors.

Hint: For instance, by calculating both and comparing them, plus explaining where the difference comes from.
3. Consider a bilinear system of m equations in (s, p) variables: $\mathbf{x}=$ $\left(x_{1}, \ldots, x_{s}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{p}\right)$. See an example below with $s=2$, $p=3$ and $m=5$.

$$
\begin{aligned}
& x_{1} y_{1}+x_{2} y_{1}+x_{1} y_{2}+x_{2} y_{2}+x_{2} y_{3}=0 \\
& x_{2} y_{1}+x_{2} y_{2}+x_{1} y_{3}+x_{2}+1=0 \\
& x_{1} y_{1}+x_{2} y_{1}+x_{2} y_{3}=0 \\
& x_{2} y_{1}+x_{1} y_{2}+x_{1}+x_{2}=0 \\
& x_{1} y_{1}+x_{2} y_{2}+x_{1} y_{3}+x_{2}+1=0
\end{aligned}
$$

(a) How would you perform an (almost) exhaustive search on a bilinear system, and what is the complexity of your approach?
(b) How would you modify the Simple algorithm to take advantage of the bilinearity? What is the complexity in this case?
4. What is the number of monomials of degree at most D in a system of equations
(a) defined over \mathbb{F}_{2};
(b) defined over \mathbb{F}_{q}, with $q>2$;
5. What is the degree of regularity of a system of $m=6$ equations in $n=4$ variables?

Hint: To check your answer, you can compute the Hilbert series in SageMath as follows

```
R.<t> = PowerSeriesRing(ZZ)
hs = ((1-t^2)^(m)) / (1-t)^(n)
print(hs)
```

In the following, you should use this code any time you need to find the degree of regularity.
6. If the system in the previous exercise is solved using a Gröbner-based algorithm, how big is the Macaulay matrix that we build, in MB?
(a) Answer the same question for a system of $m=146$ equations in $n=73$ variables.
7. Let us consider a system over \mathbb{F}_{3} of m equations in n variables, where $m=2 n$.
(a) What is minimum number of variables for which a Gröbner-based algorithm outperforms the Simple algorithm, ignoring the memory requirements and polynomial factors in the complexity?
(b) Answer the same question for a system over \mathbb{F}_{7}.
(c) If we do take into account the memory requirements of the algorithms and compare their performance starting from a fixed budget for the overall attack, would the value of n increase or decrease in your answer?

