Algebraic cryptanalysis: MQ solving

Monika Trimoska

Selected Areas in Cryptology - Part 1
Spring, 2024

TU/e

Algebraic cryptanalysis

A type of cryptanalytic methods where the problem of finding the secret key (or any attack goal) is reduced to the problem of finding a solution to a nonlinear multivariate polynomial system of equations.

Algebraic cryptanalysis

algebraic modeling

$$
\begin{gathered}
\text { Tolmosikg } \\
\text { forgery } \\
\Omega 3
\end{gathered}
$$

Algebraic cryptanalysis

Algebraic cryptanalysis

algebraic modeling

$$
\begin{gathered}
\text { Tolmosikg } \\
\text { forgery } \\
\Omega 3
\end{gathered}
$$

Algebraic cryptanalysis

The MQ problem

The MQ problem

Given m multivariate quadratic polynomials f_{1}, \ldots, f_{m} of n variables over a finite field \mathbb{F}_{q}, find a tuple $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{F}_{q}^{n}, such that $f_{1}(\mathbf{x})=\ldots=f_{m}(\mathbf{x})=0$.

Example. $\quad f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0$

$$
\begin{aligned}
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Overview of solvers

Techniques in
(Fast) Exhaustive Search

Exhaustive Search

$$
\begin{aligned}
& x_{1} \cdot x_{2}+x_{1} \cdot x_{3}+x_{3} \cdot x_{4}+x_{3}=0 \\
& x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{2}+1=0 \\
& x_{1} \cdot x_{2}+x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{4}=0 \\
& x_{1} \cdot x_{4}+x_{2} \cdot x_{3}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Binary search tree

Exhaustive Search

Worst-case complexity: $\mathcal{O}\left(2^{n}\right)$

$$
\begin{aligned}
& 1 \cdot 0+1 \cdot 0+0 \cdot 1+0=0 \\
& 0 \cdot 0+0 \cdot 1+1+0+1=0 \\
& 1 \cdot 0+0 \cdot 0+0 \cdot 1+1+1=0 \\
& 1 \cdot 1+0 \cdot 0+0+0+1=0
\end{aligned}
$$

Binary search tree

Fast Exhaustive Search

* The libFES solver

Gray code

- An ordering of the binary system where two successive values differ in only one bit.

Example. $n=4$

0000	1100
0001	1101
0011	1111
0010	1110
0110	1010
0111	1011
0101	1001
0100	1000

Fast Exhaustive Search

Gray code
00001100
00011101
00111111
00101110
01101010
01111011
01011001
01001000

$$
\begin{aligned}
& x_{1} \cdot x_{2}+x_{1} \cdot x_{3}+x_{3} \cdot x_{4}+x_{3}=0 \\
& x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{2}+1=0 \\
& x_{1} \cdot x_{2}+x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{4}=0 \\
& x_{1} \cdot x_{4}+x_{2} \cdot x_{3}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Fast Exhaustive Search

Gray code	
0000	1100
0001	1101
0011	1111
0010	1110
0110	1010
0111	1011
0101	1001
0100	1000

$$
\begin{aligned}
& 1 \cdot 0+1 \cdot 0+0 \cdot 1+0=0 \\
& 0 \cdot 0+0 \cdot 1+1+0+1=0 \\
& 1 \cdot 0+0 \cdot 0+0 \cdot 1+1+1=0 \\
& 1 \cdot 1+0 \cdot 0+0+0+1=0
\end{aligned}
$$

(SAT solvers)

- Propositional formula in Conjunctive Normal Form (CNF): a conjunction of clauses where each clause is a disjunction of literals and where each literal is a variable or a negated variable.

$$
\text { Example. } \begin{aligned}
& \left(x_{1} \vee \neg x_{2}\right) \wedge \\
& \left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge \\
& \left(\neg x_{1} \vee x_{4}\right)
\end{aligned}
$$

The SATisfiability problem

Given a propositional formula, determine whether there exists an interpretation (assignment of all variables) such that the formula is satisfied (evaluates to TRUE).

SAT solver: a tool for solving the SAT problem.

Partial assignment and conflicts

$$
\begin{aligned}
& x_{1} \cdot x_{2}+x_{1} \cdot x_{3}+x_{3} \cdot x_{4}+x_{3}=0 \\
& x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{2}+1=0 \\
& x_{1} \cdot x_{2}+x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{4}=0 \\
& x_{1} \cdot x_{4}+x_{2} \cdot x_{3}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Partial assignment and conflicts

$$
\begin{aligned}
& 1 \cdot 0+1 \cdot x_{3}+x_{3} \cdot x_{4}+x_{3}=0 \\
& 0 \cdot x_{3}+0 \cdot x_{4}+1+0+1=0 \\
& 1 \cdot 0+0 \cdot x_{3}+0 \cdot x_{4}+1+x_{4}=0 \\
& 1 \cdot x_{4}+0 \cdot x_{3}+0+x_{3}+x_{4}=0
\end{aligned}
$$

Partial assignment and conflicts

Which (portion of) branches are missing ??
\longrightarrow Worst-case complexity: $\mathcal{O}\left(2^{n}\right)$

$$
\begin{aligned}
& x_{1} \cdot x_{2}+x_{1} \cdot x_{3}+x_{3} \cdot x_{4}+x_{3}=0 \\
& x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{2}+1=0 \\
& x_{1} \cdot x_{2}+x_{2} \cdot x_{3}+x_{2} \cdot x_{4}+x_{1}+x_{4}=0 \\
& x_{1} \cdot x_{4}+x_{2} \cdot x_{3}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Overview of solvers

Macaulay matrix

Linearisation

Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

Example.

$$
\begin{array}{ll}
f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 & f_{1}: y_{2}+y_{5}+x_{1}+x_{3}+x_{4}=0 \\
f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 & \\
f_{2}: y_{4}+y_{3}+y_{6}+x_{1}+x_{2}+x_{4}=0 \\
f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 & f_{3}: y_{5}+y_{6}+x_{1}+x_{3}+1=0 \\
f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 & f_{4}: y_{1}+y_{2}+y_{4}+x_{3}+x_{4}+1=0 \\
f_{5}:: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 & f_{5}: y_{1}+y_{4}+y_{3}+x_{3}=0 \\
f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0 & f_{6}: y_{2}+y_{3}+y_{6}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{array}
$$

Linearisation

Linearisation adds solutions: a random quadratic system of m equations in n variables, when $n=m$, is expected to have one solution (probability is $\sim \frac{1}{q}$ for systems over \mathbb{F}_{q}). The corresponding linearised system has a solution space of dimension $\binom{n+1}{2}^{q}-m$.
$\uparrow\binom{n}{2}$ quadratic plus n linear monomials

Loss of information: e.g. assignment $x_{1}=1 ; x_{2}=0 ; y_{1}=1$; is part of a valid solution to the linearised system, but $x_{1} x_{2} \neq y_{1}$.

Macaulay matrix

Monomials

Equations

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Techniques in

Simple algorithm

Simple algorithm

\longrightarrow Partial assignment

\longrightarrow Gaussian elimination

$$
\begin{aligned}
& 1 \cdot 0+1 \cdot x_{3}+x_{3} \cdot x_{4}+x_{3}=0 \\
& 0 \cdot x_{3}+0 \cdot x_{4}+1+0+1=0 \\
& 1 \cdot 0+0 \cdot x_{3}+0 \cdot x_{4}+1+x_{4}=0 \\
& 1 \cdot x_{4}+0 \cdot x_{3}+0+x_{3}+x_{4}=0
\end{aligned}
$$

Simple algorithm

Guess sufficiently many variables so that the remaining polynomial system can be solved by linearization.

Simple algorithm: complexity

- n - number of variables
- m - number of equations
number of monomials \leq number of equations

$$
\binom{n-?}{2} \leq m
$$

$$
\hookrightarrow \mathcal{O}\left(2^{n-\sqrt{2 m}}\right)
$$

Overview of solvers

Gröbner basis algorithms

Gröbner basis algorithms (intuition)

*We are essentially describing the XL algorithm.

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Gröbner basis algorithms (intuition)

*We are essentially describing the XL algorithm.
$D=3$

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Gröbner basis algorithms (intuition)

*We are essentially describing the XL algorithm.
$D=4$

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Gröbner basis

- Let $R=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables.
- An ideal in R is an additive subgroup I such that if $g \in R$ and $f \in I$, then $g f \in I$.
- The subset $\left\{f_{1}, \ldots, f_{m}\right\} \subset R$ is a set of generators for an ideal I if every element $t \in I$ can be written in the form $t=\sum_{1}^{n}$ with $g_{i} \in R$.
- By the Hilbert basis theorem: every ideal in R has a finite set of generators.
- The subset of R defined as $V(I)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0\right.$ for all $\left.f \in I\right\}$ is called an algebraic variety. It is the set of all solutions to the system of equations $f_{1}\left(x_{1}, \ldots, x_{n}\right)=\ldots=f_{1}\left(x_{1}, \ldots, x_{n}\right)=0$.
- By the Nullstellensatz: $\mathbf{I}(V(I))=I$, where $\mathbf{I}(V)$ denotes the ideal of V, i.e. $\mathbf{I}(V)=\{f \in R \mid f(a)=0$ for all $a \in V\}$ (Similar to Gauss' fundamental theorem, but for polynomials in many variables).

Gröbner basis

- A Gröbner basis of an ideal I is a set of generators with some nice (useful) property.

For our case, the nice property is that a solution can be extracted easily from the Gröbner basis.

Example. The shape of a GB with respect to the lexicographic order

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{1}+x_{2} x_{4}+x_{5}+x_{6}+1=0 \\
& f_{2}: x_{1} x_{4}+x_{1}+x_{2} x_{3}+x_{2}+x_{3} x_{4}+x_{3} x_{6}+x_{4}+x_{5}=0 \\
& f_{3}: x_{1} x_{5}+x_{1}+x_{2}+x_{3} x_{4}+x_{6}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{5}+x_{3}+x_{4}+x_{6}+1=0 \\
& f_{5}: x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{5}+x_{5} x_{6}+1=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{1}+x_{2}+x_{3} x_{6}+x_{3}+x_{5}=0
\end{aligned}
$$

$$
f_{1}^{\prime}: x_{1}+x_{6}=0
$$

$$
f_{2}^{\prime}: x_{2}+x_{6}=0
$$

$$
\longrightarrow \quad f_{3}^{\prime}: x_{3}+x_{6}=0
$$

$$
f_{4}^{\prime}: x_{4}+x_{6}+1=0
$$

$$
f_{5}^{\prime}: x_{5}=0
$$

$$
V\left(<f_{1}, \ldots, f_{6}>\right)=\{(0,0,0,1,0,0),(1,1,1,0,0,1)\}
$$

Gröbner basis algorithms:

Buchberger, Lazard, F4, F5
Follow the core idea that we described, but combine the equations in an organised way, rather than multiplying them by all possible monomials.

Not covered in this course:

- Monomial orders
- S-polynomials
- Polynomial long division
- Row reduction in parallel
- Reductions to zero
- Syzygy criterion
- ...

XL/ Gröbner basis algorithms: complexity

$$
\mathcal{O}\left(m D_{\text {reg }}\binom{n+D_{\text {reg }}-1}{D_{\text {reg }}}^{\omega}\right)
$$

$D_{\text {reg }}$: degree of regularity
\longrightarrow the power of the first non-positive coefficient in the expansion of $\frac{\left(1-t^{2}\right)^{m}}{(1-t)^{n}}$

Overview of solvers

FXL, Hybrid, BoolSolve

Techniques are already covered in the previous section.
Algorithms will be explained in the summary.

The crossbred algorithm

Crossbred algorithm

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

Crossbred algorithm

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

$x_{1} x_{2}$	$x_{1} x_{3}$	$x_{2} x_{3}$	$x_{1} x_{4}$	$x_{2} x_{4}$	$x_{3} x_{4}$	x_{1}	x_{2}	x_{3}	x_{4}	1	
	f_{1}	1	0	0	0	0	0	0	0	0	1
f_{2}	0	1	0	0	0	0	1	1	1	1	0
f_{3}	0	0	1	0	0	0	1	1	0	1	0
f_{4}	0	0	0	1	0	0	1	1	1	0	1
f_{5}	0	0	0	0	1	0	0	1	0	0	0
f_{6}	0	0	0	0	0	1	1	1	1	0	1

Crossbred algorithm

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

\longrightarrow Take linear subsystem

$x_{1} x_{2}$	$x_{1} x_{3}$	$x_{2} x_{3}$	$x_{1} x_{4}$	$x_{2} x_{4}$	$x_{3} x_{4}$	x_{1}	x_{2}	x_{3}	x_{4}	1	
	f_{1}	1	0	0	0	0	0	0	0	0	1
f_{2}	0	1	0	0	0	0	1	1	1	1	0
f_{3}	0	0	1	0	0	0	1	1	0	1	0
f_{4}	0	0	0	1	0	0	1	1	1	0	1
f_{5}	0	0	0	0	1	0	0	1	0	0	0
f_{6}	0	0	0	0	0	1	1	1	1	0	1

...if we had another 4 equations

Crossbred algorithm

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0 \\
& f_{4}: x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}+x_{4}+1=0 \\
& f_{5}: x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{4}+x_{3}=0 \\
& f_{6}: x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{3}+x_{4}=0
\end{aligned}
$$

$x_{1} x_{2}$	$x_{1} x_{3}$	$x_{2} x_{3}$	$x_{1} x_{4}$	$x_{2} x_{4}$	$x_{3} x_{4}$	x_{1}	x_{2}	x_{3}	x_{4}	1	
	f_{1}	1	0	0	0	0	0	0	0	0	1
f_{2}	0	1	0	0	0	0	1	1	1	1	0
f_{3}	0	0	1	0	0	0	1	1	0	1	0
f_{4}	0	0	0	1	0	0	1	1	1	0	1
f_{5}	0	0	0	0	1	0	0	1	0	0	0
f_{6}	0	0	0	0	0	1	1	1	1	0	1

Crossbred algorithm

$$
\begin{aligned}
& f_{1}: x_{1} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+x_{4}=0 \\
& f_{2}: x_{2} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1}+x_{2}+x_{4}=0 \\
& f_{3}: x_{2} x_{4}+x_{3} x_{4}+x_{1}+x_{3}+1=0
\end{aligned}
$$

Subsystem can be linearised

\}
...if we had another 4 equations, the subsystem would have a unique solution.

Otherwise: check candidate solutions against the other equations.

Crossbred algorithm

Parameters of the algorithm: D, k, d, h
\longrightarrow Enumerate h variables.
\longrightarrow Choose k of the remaining variables.
\longrightarrow Augment system up to degree D (compute degree- D Macaulay matrix).
\longrightarrow Take the subsystem that is at most degree d in the k chosen variables.
\longrightarrow Enumerate all but the k chosen variables.
\longrightarrow Linearise the subsystem and solve it.
\longrightarrow Check if candidate solutions are consistent with the rest of the system.

The complexity is calculated as the best trade-off between the four parameters.

Crossbred algorithm

	Number of Variables (n)	Seed (0,1,2,3,4)	Date	Contestants	Computational Resource	Data
1	83	0	2023/09/16	Charles Bouillaguet and Julia Sauvage	https://gitlab.lip6. fr/almasty/hpXbre d, 3488 AMD EPYC $7 J 13$ cores on the Oracle public cloud	Details
6	74	0	2016/12/17	Antoine Joux	New hybridized XL related algorithm, Heterogeneous cluster of Intel Xeon @ 2.7-3.5 Ghz	Details
7	74	4	2017/11/15	Kai-Chun Ning, Ruben Niederhagen	Parallel Crossbred, 54 GPUs in the Saber cluster	Details
25	66	0	2016/01/22	Tung Chou, Ruben Niederhagen, BoYin Yang	Gray Code enumeration, Rivyera, 128 Spartan 6 FPGAs	Details

Fukuoka MQ challenge record computations ($m=2 n$)

Overview of solvers

Summary

(Partial)
enumeration

Candidate
solutions
(subsvstem)

Conflict search \quadExtending to higher degrees

Computing a
Gröbner Basis

Summary

Candidate solutions (subsystem)

Conflict search

Extending to higher degrees

Computing a Gröbner Basis

F_{4} / F_{5}

Summary

Candidate solutions (sura ions	Conflict search	Extending to higher degrees

Computing a Gröbner Basis

\qquad

F_{4} / F_{5}

Crossbred

Summary

(Partial)
enumeration

Candidate
solutions
(subsvstem)

Conflict search

Extending to higher degrees

Computing a
Gröbner Basis

Summary

Summary

(Partial)
enumeration

Candidate solutions (subsvstem)

Conflict search

Extending to higher degrees

Computing a Gröbner Basis

Summary

Computing a Gröbner Basis

$$
F_{4} / F_{5}
$$

Summary

Summary

Summary

Summary

Summary

Summary

(Partial)
enumeration

Candidate solutions (subsystem)

> Computing a Gröbner Basis

Summary

